To see the other types of publications on this topic, follow the link: Condensed systems.

Journal articles on the topic 'Condensed systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Condensed systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Varadhan, Balan, Chellathurai Amiirthabai Subasini, Gopinath Palani, and Mayakannan Selvaraju. "Enhancing solar still distillation efficiency through integrated solar chimneys and submerged condenser systems." Thermal Science, no. 00 (2024): 122. http://dx.doi.org/10.2298/tsci230310122v.

Full text
Abstract:
A solar chimney has been studied in this research to increase the efficacy of still convection currents. The usage of a condenser also improved the condensation process. Solar still condensers are typically made up of tubes through which salt water is pumped. But in the setup shown, water vapour was channelled through a series of pipes submerged in the ocean. Solar still is built and tested in real-world situations with solar as a standard. Evaporator (basin) area-based efficiency comparisons reveal that the still-equipped solar chimneys and condensers yielded 9.1% superior results. The mainst
APA, Harvard, Vancouver, ISO, and other styles
2

Kоvаlеnkо, I. L., V. P. Kuprin, and D. V. Kiyaschenko. "Energy condensed packaged systems. Composition, production, properties." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 1 (March 31, 2015): 164–70. http://dx.doi.org/10.15276/opu.1.45.2015.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kovalenko, I. L., and V. P. Kuprin. "Energy condensed packaged systems: Oxidizer components selection." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (December 15, 2014): 191–95. http://dx.doi.org/10.15276/opu.2.44.2014.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pal, Shweta, Arun Kumar Wamankar, and Sailendra Dwivedi. "Review on Condenser Heat Transfer of Computational FluidDynamic System Using ANSYS." International Journal of Recent Development in Engineering and Technology 10, no. 2 (2021): 63–68. http://dx.doi.org/10.54380/ijrdetv10i109.

Full text
Abstract:
Condenser is a high pressure side heat exchanger in which heated vapor enters and gets converted into liquid form by condensation process. In the condenser coil, gaseous substance is condensed into liquid by transferring latent heat content present in it to the surrounding. In the whole process, mode of heat transfer is conduction in condenser coil and forced convection between refrigerant and condenser. Any refrigeration system's backbone is comprised of condensers. It aids in the transfer of heat from the refrigerant to the universal sink, which is the atmosphere. The latent heat of the refr
APA, Harvard, Vancouver, ISO, and other styles
5

Bal'makov, Mikhail D. "Information capacity of condensed systems." Physics-Uspekhi 42, no. 11 (1999): 1167–73. http://dx.doi.org/10.1070/pu1999v042n11abeh000547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bal'makov, Mikhail D. "Information capacity of condensed systems." Uspekhi Fizicheskih Nauk 169, no. 11 (1999): 1273. http://dx.doi.org/10.3367/ufnr.0169.199911f.1273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wölfle, Peter. "Quasiparticles in condensed matter systems." Reports on Progress in Physics 81, no. 3 (2018): 032501. http://dx.doi.org/10.1088/1361-6633/aa9bc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mikhailov, A. S., and G. Ertl. "Nonequilibrium Structures in Condensed Systems." Science 272, no. 5268 (1996): 1596–97. http://dx.doi.org/10.1126/science.272.5268.1596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lancelot, Jean-Charles, Bertrand Letois, Sylvain Rault, Max Robba, and Maria Rogosca. "Thienopyrrolizines: New condensed triheterocyclic systems." Journal of Heterocyclic Chemistry 31, no. 2 (1994): 501–4. http://dx.doi.org/10.1002/jhet.5570310240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marsagishvili, T., and M. Machavariani. "THEORETICAL ASPECTS OF VIBRATIONAL SPECTROSCOPY OF CONDENSED SYSTEMS WITH IMPURITY PARTICLES." Chemical Problems 21, no. 3 (2023): 211–20. http://dx.doi.org/10.32737/2221-8688-2023-3-211-220.

Full text
Abstract:
Some problems of vibrational spectroscopy of particles in condensed systems are considered in this work. One of the aspects of theoretical research is the study of the vibrational properties of individual particles in view of the nano-dimension of the molecules of the condensed system surrounding the particle. Using the apparatus of temperature, Green functions of the operators of polarization of condensed systems, two main mechanisms of influence on impurity particles from the medium, solvation and fluctuation, are distinguished. Theoretical results are obtained within the framework of these
APA, Harvard, Vancouver, ISO, and other styles
11

Savina, Luisa, and Aleksandr Sokolov. "Synthesis of condensed morpholine-containing systems by reductive or oxidative heterocyclisation." From Chemistry Towards Technology Step-By-Step 4, no. 3 (2023): 69–75. http://dx.doi.org/10.52957/2782-1900-2024-4-3-69-75.

Full text
Abstract:
The article examines the reduction of N (2,4 dinitrophenyl)morpholine in acidic medium by tin (II) chloride. Under these conditions there is a formation of a mixture of products of reduction, chlorination and heterocyclisation reactions. The authors developed a method for the preparation of condensed 3,4 dihydro-1H-benzo[4,5]imidazo[2,1-c][1,4]oxazines by reduction of (2-nitro-4-R-phenyl)morpholine into 5-R-2-piperidin-1-ylanilines followed by oxidative heterocyclisation with supramuravic acid.
APA, Harvard, Vancouver, ISO, and other styles
12

Smirnov, Boris M. "Similarity laws in disordered condensed systems." Uspekhi Fizicheskih Nauk 158, no. 8 (1989): 749. http://dx.doi.org/10.3367/ufnr.0158.198908j.0749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yukalov, V. I. "Structure factor of Bose-condensed systems." Journal of Physical Studies 11, no. 1 (2007): 55–62. http://dx.doi.org/10.30970/jps.11.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Smirnov, Boris M. "Similarity laws in disordered condensed systems." Soviet Physics Uspekhi 32, no. 8 (1989): 736. http://dx.doi.org/10.1070/pu1989v032n08abeh002753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mikhailov, Yu M., Yu B. Kalmykov, and V. V. Aleshin. "Combustion Hotspots of Energetic Condensed Systems." Combustion, Explosion, and Shock Waves 55, no. 6 (2019): 661–70. http://dx.doi.org/10.1134/s0010508219060054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kobes, R., and G. Semenoff. "Cutkosky rules for condensed-matter systems." Physical Review B 34, no. 6 (1986): 4338–41. http://dx.doi.org/10.1103/physrevb.34.4338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Iwata, Kazuyoshi, Mitsuya Tanaka, Naoya Mita, and Yoshiyuki Kohno. "Free energy of entanglement–condensed systems." Polymer 43, no. 24 (2002): 6595–607. http://dx.doi.org/10.1016/s0032-3861(02)00525-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yukalov, V. I., A. N. Novikov, and V. S. Bagnato. "Strongly Nonequilibrium Bose-Condensed Atomic Systems." Journal of Low Temperature Physics 180, no. 1-2 (2015): 53–67. http://dx.doi.org/10.1007/s10909-015-1288-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Slusher, R. E., and C. Weisbuch. "Optical microcavities in condensed matter systems." Solid State Communications 92, no. 1-2 (1994): 149–58. http://dx.doi.org/10.1016/0038-1098(94)90868-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Laflorencie, Nicolas. "Quantum entanglement in condensed matter systems." Physics Reports 646 (August 2016): 1–59. http://dx.doi.org/10.1016/j.physrep.2016.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nikol'skii, B. E., N. L. Patratii, and Yu V. Frolov. "Combustion of boron-containing condensed systems." Combustion, Explosion, and Shock Waves 28, no. 1 (1992): 45–47. http://dx.doi.org/10.1007/bf00754966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zurek, W. H. "Cosmological experiments in condensed matter systems." Physics Reports 276, no. 4 (1996): 177–221. http://dx.doi.org/10.1016/s0370-1573(96)00009-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nenno, Dennis M., Christina A. C. Garcia, Johannes Gooth, Claudia Felser, and Prineha Narang. "Axion physics in condensed-matter systems." Nature Reviews Physics 2, no. 12 (2020): 682–96. http://dx.doi.org/10.1038/s42254-020-0240-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wiberg, Kenneth B. "Properties of Some Condensed Aromatic Systems." Journal of Organic Chemistry 62, no. 17 (1997): 5720–27. http://dx.doi.org/10.1021/jo961831j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Feltz, A., and A. Morr. "Redox reactions in condensed oxide systems." Journal of Non-Crystalline Solids 74, no. 2-3 (1985): 313–24. http://dx.doi.org/10.1016/0022-3093(85)90077-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Belevantsev, Vladimir I., Alexandr P. Ryzhikh, Kseniya V. Zherikova, and Natalia B. Morozova. "Equilibria in systems condensed substance–gas." Journal of Thermal Analysis and Calorimetry 115, no. 2 (2013): 1851–56. http://dx.doi.org/10.1007/s10973-013-3401-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Anusooya, Y., Aparna Chakrabarti, Swapan K. Pati, and S. Ramasesha. "Ring currents in condensed ring systems." International Journal of Quantum Chemistry 70, no. 3 (1998): 503–13. http://dx.doi.org/10.1002/(sici)1097-461x(1998)70:3<503::aid-qua6>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lebedeva, E. A., I. L. Tutubalina, V. A. Val’tsifer, V. N. Strel’nikov, S. A. Astaf’eva, and I. V. Beketov. "Agglomeration of the condensed phase of energetic condensed systems containing modified aluminum." Combustion, Explosion, and Shock Waves 48, no. 6 (2012): 694–98. http://dx.doi.org/10.1134/s0010508212060056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yukalov, V. I. "Nonequivalent operator representations for Bose-condensed systems." Laser Physics 16, no. 3 (2006): 511–25. http://dx.doi.org/10.1134/s1054660x06030145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Coker, D. F., and R. O. Watts. "Diffusion Monte Carlo simulation of condensed systems." Journal of Chemical Physics 86, no. 10 (1987): 5703–7. http://dx.doi.org/10.1063/1.452496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Korbonits, Dezső, Benjamin Podányi, Árpád Illár, Kálmán Simon, Miklós Hanusz, and István Hermecz. "Synthesis of new condensed nitrogen heterocyclic systems." Tetrahedron 64, no. 6 (2008): 1071–76. http://dx.doi.org/10.1016/j.tet.2007.11.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Qiang, and Dmitri E. Kharzeev. "Chiral magnetic effect in condensed matter systems." Nuclear Physics A 956 (December 2016): 107–11. http://dx.doi.org/10.1016/j.nuclphysa.2016.03.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yukalov, V. I. "Self-consistent theory of Bose-condensed systems." Physics Letters A 359, no. 6 (2006): 712–17. http://dx.doi.org/10.1016/j.physleta.2006.07.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Fayer, Michael D. "Picosecond FEL experiments on condensed matter systems." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 304, no. 1-3 (1991): 797. http://dx.doi.org/10.1016/0168-9002(91)90979-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Seplyarskii, B. S. "Ignition of condensed systems with gas filtration." Combustion, Explosion, and Shock Waves 27, no. 1 (1991): 1–10. http://dx.doi.org/10.1007/bf00785346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khoshtaria, E. T., L. N. Kurkovskaya, K. T. Batsikadze, et al. "Interconversions of isatin-containing condensed tetracyclic systems." Chemistry of Heterocyclic Compounds 42, no. 5 (2006): 686–92. http://dx.doi.org/10.1007/s10593-006-0147-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dudyrev, A. S., A. N. Golovchak, and F. A. Chumak. "Laser-initiated charges containing heterogeneous condensed systems." Journal of Mining Science 31, no. 2 (1995): 152–53. http://dx.doi.org/10.1007/bf02046867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Stamp, P. C. E. "Spin fluctuation theory in condensed quantum systems." Journal of Physics F: Metal Physics 15, no. 9 (1985): 1829–65. http://dx.doi.org/10.1088/0305-4608/15/9/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yoshihara, Keitaro, Yutaka Nagasawa, Arkadiy Yartsev, et al. "Femtosecond intermolecular electron transfer in condensed systems." Journal of Photochemistry and Photobiology A: Chemistry 80, no. 1-3 (1994): 169–75. http://dx.doi.org/10.1016/1010-6030(94)01038-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Koroleva, M. G., O. V. Dyablo, A. F. Pozharskii, and Z. A. Starikova. "N-Amino Derivatives of Condensed Imidazole Systems." Chemistry of Heterocyclic Compounds 39, no. 9 (2003): 1161–71. http://dx.doi.org/10.1023/b:cohc.0000008260.31382.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Leonov, V. V. "Electrodynamics of Diffusion in Condensed Physicochemical Systems." Journal of Engineering Physics and Thermophysics 87, no. 2 (2014): 270–76. http://dx.doi.org/10.1007/s10891-014-1010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shlesinger, Michael F. "Book review:Dynamical processes in condensed molecular systems." Journal of Statistical Physics 59, no. 3-4 (1990): 1089–90. http://dx.doi.org/10.1007/bf01025865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ma, Chen-Te. "A duality web in condensed matter systems." Annals of Physics 390 (March 2018): 107–30. http://dx.doi.org/10.1016/j.aop.2018.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hutter, Jürg, Marcella Iannuzzi, Florian Schiffmann, and Joost VandeVondele. "cp2k: atomistic simulations of condensed matter systems." Wiley Interdisciplinary Reviews: Computational Molecular Science 4, no. 1 (2013): 15–25. http://dx.doi.org/10.1002/wcms.1159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

LANCELOT, J. C., B. LETOIS, S. RAULT, M. ROBBA, and M. ROGOSCA. "ChemInform Abstract: Thienopyrrolizines: New Condensed Triheterocyclic Systems." ChemInform 26, no. 12 (2010): no. http://dx.doi.org/10.1002/chin.199512148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Scholz, Lena. "Condensed Forms for Linear Port-Hamiltonian Descriptor Systems." Electronic Journal of Linear Algebra 35 (February 1, 2019): 65–89. http://dx.doi.org/10.13001/1081-3810.3638.

Full text
Abstract:
Motivated by the structure which arises in the port-Hamiltonian formulation of constraint dynamical systems, structure preserving condensed forms for skew-adjoint differential-algebraic equations (DAEs) are derived. Moreover, structure preserving condensed forms under constant rank assumptions for linear port-Hamiltonian differential-algebraic equations are developed. These condensed forms allow for the further analysis of the properties of port-Hamiltonian DAEs and to study, e.g., existence and uniqueness of solutions or to determine the index. It can be shown that under certain conditions fo
APA, Harvard, Vancouver, ISO, and other styles
47

LEV, B. I. "CELLULAR STRUCTURE IN CONDENSED MATTER." Modern Physics Letters B 27, no. 28 (2013): 1330020. http://dx.doi.org/10.1142/s0217984913300202.

Full text
Abstract:
In this paper, general description of a cellular structure formation in a system of interacting particles has been proposed. Analytical results are presented for such structures in colloids, systems of particles immersed into a liquid crystal and gravitational systems. It is shown that physical nature of formation of cellular structures in all systems of interacting particles is identical. In all cases, a characteristic of the cellular structure, depending on strength of the interaction, concentration of particles and temperature, can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
48

Song, Dong, and Bharat Bhushan. "Optimization of bioinspired triangular patterns for water condensation and transport." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2150 (2019): 20190127. http://dx.doi.org/10.1098/rsta.2019.0127.

Full text
Abstract:
Water condenses on a surface in ambient environment if the surface temperature is below the dew point. For water collection, droplets should be transported to storage before the condensed water evaporates. In this study, Laplace pressure gradient inspired by conical spines of cactus plants is used to facilitate the transport of water condensed in a triangular pattern to the storage. Droplet condensation, transportation and water collection rate within the bioinspired hydrophilic triangular patterns with various lengths and included angles, surrounded by superhydrophobic regions, were explored.
APA, Harvard, Vancouver, ISO, and other styles
49

Bryk, Rafał, Holger Schmidt, Thomas Mull, Thomas Wagner, Ingo Ganzmann, and Oliver Herbst. "Modeling of Kerena Emergency Condenser." Archives of Thermodynamics 38, no. 4 (2017): 29–51. http://dx.doi.org/10.1515/aoter-2017-0023.

Full text
Abstract:
Abstract KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with
APA, Harvard, Vancouver, ISO, and other styles
50

Vandewal, Koen. "Interfacial Charge Transfer States in Condensed Phase Systems." Annual Review of Physical Chemistry 67, no. 1 (2016): 113–33. http://dx.doi.org/10.1146/annurev-physchem-040215-112144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!