Academic literature on the topic 'Conductive Metal Inks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conductive Metal Inks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conductive Metal Inks"
Tomotoshi, Daisuke, and Hideya Kawasaki. "Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics." Nanomaterials 10, no. 9 (August 27, 2020): 1689. http://dx.doi.org/10.3390/nano10091689.
Full textAguilar-Banegas, Alejandro David, Fredy David Reyes-Cruz, Jesús Antonio Vargas-Pineda, and Cesar Humberto Ortega-Jimenez. "Literature Review of Gallium: Conductive Ink Alternative?" Materials Science Forum 975 (January 2020): 139–44. http://dx.doi.org/10.4028/www.scientific.net/msf.975.139.
Full textRenn, Michael J., Matthew Schrandt, Jaxon Renn, and James Q. Feng. "Localized Laser Sintering of Metal Nanoparticle Inks Printed with Aerosol Jet® Technology for Flexible Electronics." Journal of Microelectronics and Electronic Packaging 14, no. 4 (October 1, 2017): 132–39. http://dx.doi.org/10.4071/imaps.521797.
Full textTam, Sze Kee, Ka Yip Fung, Grace Sum Hang Poon, and Ka Ming Ng. "Product design: Metal nanoparticle-based conductive inkjet inks." AIChE Journal 62, no. 8 (May 16, 2016): 2740–53. http://dx.doi.org/10.1002/aic.15271.
Full textMendez-Rossal, Hector R., and Gernot M. Wallner. "Printability and Properties of Conductive Inks on Primer-Coated Surfaces." International Journal of Polymer Science 2019 (March 7, 2019): 1–8. http://dx.doi.org/10.1155/2019/3874181.
Full textReiser, B., L. González-García, I. Kanelidis, J. H. M. Maurer, and T. Kraus. "Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics." Chemical Science 7, no. 7 (2016): 4190–96. http://dx.doi.org/10.1039/c6sc00142d.
Full textKamyshny, Alexander, and Shlomo Magdassi. "Conductive nanomaterials for 2D and 3D printed flexible electronics." Chemical Society Reviews 48, no. 6 (2019): 1712–40. http://dx.doi.org/10.1039/c8cs00738a.
Full textLee, Seungae, Jahyun Koo, Seung-Kyun Kang, Gayoung Park, Yung Jong Lee, Yu-Yu Chen, Seon Ah Lim, Kyung-Mi Lee, and John A. Rogers. "Metal microparticle – Polymer composites as printable, bio/ecoresorbable conductive inks." Materials Today 21, no. 3 (April 2018): 207–15. http://dx.doi.org/10.1016/j.mattod.2017.12.005.
Full textGonzález-Domínguez, Jose M., Alejandro Baigorri, Miguel Á. Álvarez-Sánchez, Eduardo Colom, Belén Villacampa, Alejandro Ansón-Casaos, Enrique García-Bordejé, Ana M. Benito, and Wolfgang K. Maser. "Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures." Nanomaterials 11, no. 6 (May 29, 2021): 1435. http://dx.doi.org/10.3390/nano11061435.
Full textLi, Wei Wei, Lu Hai Li, Li Xin Mo, Xu Wei Hu, Xian Leng, Hua Fang, Wen Bo Li, and Shu Kun Li. "Progress of Printing RFID Antenna Using Water-Based Conductive Ink." Advanced Materials Research 380 (November 2011): 137–40. http://dx.doi.org/10.4028/www.scientific.net/amr.380.137.
Full textDissertations / Theses on the topic "Conductive Metal Inks"
Qi, Siyuan. "Microwave assisted processing of metal loaded inks and pastes for electronic interconnect applications." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16118.
Full textSui, Yongkun. "A Low-Temperature Printing Technology for Fabricating Electrically Conductive Structures and Devices Using Plasma-Activated Stabilizer-Free Inks." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1562589709669126.
Full textÖhlund, Thomas. "Metal Films for Printed Electronics : Ink-substrate Interactions and Sintering." Doctoral thesis, Mittuniversitetet, Avdelningen för naturvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23420.
Full text"Formulating a Particle-Free and Low Temperature Nickel Reactive Ink for Inkjet Printing Conductive Features." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.53708.
Full textDissertation/Thesis
Masters Thesis Chemical Engineering 2019
WANG, LING-HSUAN, and 王翎軒. "Fabrication of Metal Conductive Circuits on Polyimide Substrate by Laser-Assisted Ion Catalyst Ink." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/42cux9.
Full textPaisana, Hugo José Antunes. "Hydrographics Electronics: Functionalize any 3D Surface." Master's thesis, 2017. http://hdl.handle.net/10316/83313.
Full textUm novo método de fabricação e transferência de circuitos impressos é introduzido. Este método permite a impressão digital de caminhos condutores sobre vários tipos de superfícies, incluindo papel de tatuagem e papel de transferência de água. Além disso, são introduzidos novos tipos de materiais e processos para a fabricação de tais circuitos (patente nos EUA preenchida).Para além disso, e inspirado em tatuagens temporárias para crianças, conseguimos produzir circuitos que podem ser transferidos para o corpo humano com o objectivo de bio-monitorização através de bio-substâncias encontradas na pele humana. Como estudo de caso, mostramos eléctrodos eletromiográficos (EMG) transferidos sobre pele humana e que permitem o reconhecimento do gesto das mãos humanas através da monitorização dos músculos do antebraço.Também inspirados na técnica de impressão hidro-gráfica, mostramos que circuitos podem ser transferidos para objectos com formas tridimensionais. A impressão hidro-gráfica está a tornar-se um método popular para transferir gráficos em várias partes e superfícies, especialmente para melhorar a estética de automóveis. Mostramos como circuitos eléctricos podem ser transferidos para essas mesmas partes e superfícies. No estudo de caso, dois circuitos foram apresentados, uma parte de um headphone que é activada ao pressionar botões impressos para controlar o volume da música, e uma peça para uma mão robótica foi actualizada com botões impressos e um LED RGB como interface para o controlo da mesma.O processo, a composição do material e os resultados são apresentados nesta dissertação.
A novel method for fabrication and transfer of printed circuits is introduced. This method allows digital printing of conductive traces over various surfaces, including tattoo paper and water transfer paper. In addition, a novel material composition and process is introduced for fabrication of such circuits (pro-visionary US Patent filed). Moreover, and inspired from children temporary tattoos, we produced circuits that can be transferred over the human body for bio-monitoring through measurement of bio-potentials over the epidermis layer of the human skin. As a case study, we show an electromyography (EMG) electrodes transferred over a volunteer skin which allows human hand gesture recognition through monitoring of the forearm muscles.Also inspired from the hydro-graphics printing technique, we showed circuits that can be transferred on three dimensional shapes. Hydro-graphics printing is recently becoming a popular method for transferring graphics over various parts, specially for car aesthetics. Here, we showed how electronics circuits can be transferred to such parts. As case study two circuits were presented, a headphone part was activated with touch buttons to control music volume and a 3D printed back-shell of a prosthetic hand was also updated with tactile buttons as human input and a RGB LED as the human interface.The process, material composition and results are presented in this dissertation.
Book chapters on the topic "Conductive Metal Inks"
Saito, Hiroshi, and Haruyuki Nakajo. "Metal Nanoparticle Conductive Inks for Industrial Inkjet Printing Applications." In Handbook of Industrial Inkjet Printing, 215–24. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687169.ch11.
Full textDzisah, Patrick, and Nuggehalli M. Ravindra. "Modeling of Rheological Properties of Metal Nanoparticle Conductive Inks for Printed Electronics." In TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings, 964–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65261-6_86.
Full textConference papers on the topic "Conductive Metal Inks"
Wang, Lei, and Jing Liu. "Liquid Metal Inks for Flexible Electronics and 3D Printing: A Review." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37993.
Full textSanghyuk Kim and Inkyu Park. "Direct metal patterning by two-step transfer printing of conductive metal nano-inks." In 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5697766.
Full textSelwood, Ronald K., Albert A. Zelinski, and Gregory R. Rosenberger. "The replacement of precious metal thick film inks using new conductive polymer technology." In 1985 EIC 17th Electrical/Electronics Insulation Conference. IEEE, 1985. http://dx.doi.org/10.1109/eic.1985.7458628.
Full textWatanabe, Akira, and Jinguang Cai. "Laser direct writing of conductive 3D micropatterns using metal nanoparticle ink." In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2016. http://dx.doi.org/10.1109/nano.2016.7751432.
Full textZheng, Yi, Zhi-Zhu He, Jun Yang, and Jing Liu. "Liquid Metal Printing for Manufacturing Large-Scale Flexible Electronic Circuits." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37763.
Full textKim, J. H., M. Y. Lee, Y. J. Park, and C. K. Song. "Roll-type Micro-contact printing process with PDMS stamp for patterning conductive Metal Line with Ag ink." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.p-10-2.
Full textSaito, Daiki, Kazuhiko Sasagawa, Takeshi Moriwaki, and Kazuhiro Fujisaki. "Damage of Flexible Electronic Line Printed With Ag Nanoparticle Ink due to High-Current Density." In ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ipack2019-6408.
Full textLee, Jung Shin, Jung Woo Cho, Sun Woo Park, Seungdon Lee, Hyunjin Lee, and Daniel Min Woo Rhee. "Numerical Study of Metal Ink Behavior on the Wettability Pattern for Conductive Line Inkjet-Printing with Lattice Boltzmann Approach." In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). IEEE, 2021. http://dx.doi.org/10.1109/ectc32696.2021.00252.
Full textZhang, Qin, and Jing Liu. "Additive Manufacturing of Conformable Electronics on Complex Objects Through Combined Use of Liquid Metal Ink and Packaging Material." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66607.
Full textBieri, N. R., S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos. "Manufacturing of Electrically Conductive Microstructures by Dropwise Printing and Laser Curing of Nanoparticle-Suspensions." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33859.
Full textReports on the topic "Conductive Metal Inks"
Selwood, R. K., G. Rosenberger, and A. Zelinski. The Replacement of Precious Metal Thick Film Inks Using Conductive Polymer Technology. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada152002.
Full text