Academic literature on the topic 'Cone-beam'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cone-beam.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cone-beam"
Zeng, Gengsheng L. "Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging." Medical Physics 40, no. 10 (September 10, 2013): 100701. http://dx.doi.org/10.1118/1.4820373.
Full textRadia, Ria, Judith Jones, and Jimmy Makdissi. "Cone beam specificity." Dental Update 49, no. 2 (February 2, 2022): 174–75. http://dx.doi.org/10.12968/denu.2022.49.2.174a.
Full textGutmann, James L. "CONE-BEAM TECHNOLOGY." Journal of the American Dental Association 142, no. 3 (March 2011): 244–46. http://dx.doi.org/10.14219/jada.archive.2011.0150.
Full textopent, Bassam. "CONE BEAM CT." Tandartspraktijk 31, no. 9 (September 2010): 20–23. http://dx.doi.org/10.1007/s12496-010-0211-3.
Full textFrongia, Gianluigi, Maria Grazia Piancino, and Pietro Bracco. "Cone-Beam Computed Tomography." Journal of Craniofacial Surgery 23, no. 4 (July 2012): 1038–43. http://dx.doi.org/10.1097/scs.0b013e318252d5e1.
Full textPerel, Morton L. "Cone-Beam Computed Tomography." Implant Dentistry 24, no. 4 (August 2015): 367. http://dx.doi.org/10.1097/id.0000000000000297.
Full textManzke, Robert. "Cardiac cone-beam CT." Medical Physics 32, no. 10 (September 29, 2005): 3227. http://dx.doi.org/10.1118/1.2040707.
Full textNasseh, Ibrahim, and Wisam Al-Rawi. "Cone Beam Computed Tomography." Dental Clinics of North America 62, no. 3 (July 2018): 361–91. http://dx.doi.org/10.1016/j.cden.2018.03.002.
Full textPereira, Ulrika Diana, Deepak Kalia, Prerna Raje Batham, Prashant Pujari, Apurva Chitalia, Sangeeta Prasad, and Suryansh Dilliwal. "Cone beam computed tomography." international journal of stomatology & occlusion medicine 8, no. 1 (March 2015): 1–7. http://dx.doi.org/10.1007/s12548-015-0121-y.
Full textKatsevich, Alexander. "Cone Beam Local Tomography." SIAM Journal on Applied Mathematics 59, no. 6 (January 1999): 2224–46. http://dx.doi.org/10.1137/s0036139998336043.
Full textDissertations / Theses on the topic "Cone-beam"
Almada, Levi Rafael Santos. "Cone Beam em endodontia." Master's thesis, [s.n.], 2011. http://hdl.handle.net/10284/2590.
Full textA imagiologia como uma área de interesse à qual se recorre frequentemente em Medicina Dentária, tem vindo a evoluir muito nos últimos anos apresentando novas tecnologias. A Tomografia Computorizada de Feixe Cónico (CBCT) é uma dessas tecnologias mais recentes, que possibilita a visualização de imagens em três dimensões das estruturas dentárias e das estruturas ósseas adjacentes. Situações como identificação de canais radiculares “anormais” em quantidade e morfologia, detecção de fracturas radiculares verticais, avaliação do processo de recuperação pós tratamento, poderão ser melhor e mais facilmente identificadas e tratadas com esta nova opção imagiológica. O objectivo deste trabalho é analisar o uso da CBCT em Endodontia. Para isso recorreu-se a uma pesquisa na base de dados online PubMed e Scielo, limitando a pesquisa a publicações feitas após o ano 2008 inclusivé, de onde resultou a selecção de 42 artigos. Com a realização deste trabalho foi possível concluir que o uso CBCT em Endodontia é de facto uma mais-valia, constituindo uma excelente ferramenta de diagnóstico. Imaging, as an area of interest which is frequently used by dentistry, has evolved in recent years featuring new technologies. Cone Beam Computed Tomography (CBCT) is one of these newer technologies, which enables the visualization of three-dimensional images of dental structures and adjacent bone tissue. Situations as identification of abnormal number and morphology of root canals, detection of vertical root fractures, evaluation of healing process after treatment, may be better and more easily identified and dealt with this new imaging option. The aim of this study, is to analyze the use of CBCT in Endodontics. Online search was performed on PubMed and Scielo database, limiting the search to publications made after the year 2008 inclusive. This resulted in the selection of 42 articles. With this study, it was concluded that the use of CBCT in Endodontics is indeed a great asset, making it an excellent diagnosis tool.
Yang, Xiaochun 1971. "Geometry of cone-beam reconstruction." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8338.
Full textIncludes bibliographical references (p. 89-91).
Geometry is the synthetic tool we use to unify all existing analytical cone-beam reconstruction methods. These reconstructions are based on formulae derived by Tuy [Tuy, 1983], Smith [Smith, 1985] and Grangeat [Grangeat, 1991] which explicitly link the cone-beam data to some intermediate functions in the Radon transform domain. However, the essential step towards final reconstruction, that is, differential-backprojection, has not yet achieved desired efficiency. A new inversion formula is obtained directly from the 3D Radon inverse [Radon, 1917, Helgason, 1999]. It incorporates the cone-beam scanning geometry and allows the theoretical work mentioned above to be reduced to exact and frugal implementations. Extensions can be easily carried out to 2D fan-beam reconstruction as well as other scanning modalities such as parallel scans by allowing more abstract geometric description on the embedding subspace of the Radon manifold. The new approach provides a canonical inverse procedure for computerized tomography in general, with applications ranging from diagnostic medical imaging to industrial testing, such as X-ray CT, Emission CT, Ultrasound CT, etc. It also suggests a principled frame for approaching other 3D reconstruction problems related to the Radon transform. The idea is simple: as was spelled out by Helgason on the opening page of his book, The Radon Transform [Helgason, 1999] - a remarkable duality characterizes the Radon transform and its inverse. Our study shows that the dual space, the so-called Radon space, can be geometrically decomposed according to the specified scanning modality.
(cont.) In cone-beam X-ray reconstruction, for example, each cone-beam projection is seen as a 2D projective subspace embedded in the Radon manifold. Besides the duality in the space relation, the symbiosis played between algebra and geometry, integration and differentiation is another striking feature in the tomographic reconstruction. Simply put, * Geometry and algebra: the two play fundamentally different roles during the inverse. Algebraic transforms carry cone-beam data into the Radon domain, whereas, the geometric decomposition of the dual space determines how the differential-backprojection operator should be systematically performed. The reason that different algorithms in cone-beam X-ray reconstruction share structural similarity is that the dual space decomposition is intrinsic to the specified scanning geometry. The differences in the algorithms lie in the appearance of algebra on the projection submanifold. The algebraic transforms initiate diverse reconstruction methods varying in terms of computational cost and stability. Equipped with this viewpoint, we are able to simplify mathematical analysis and develop algorithms that are easy to implement. Integration and differentiation: forward projection is the integral along straight lines (or planes) in the Euclidean space. During the reconstruction, differentiation is performed over the parallel planes in the projective Radon space, a manifold with clear differential structure. It is important to learn about this differential structure to ensure that correct differentiation can be carried out with respect to the parameters governing the scanning process during the reconstruction ...
by Xiaochun Yang.
Ph.D.
Turbell, Henrik. "Cone-Beam Reconstruction Using Filtered Backprojection." Doctoral thesis, Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/tek672s.pdf.
Full textRathore, Sonali A. Tyndall Donald A. "Cone beam CT in occlusal caries research." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2866.
Full textTitle from electronic title page (viewed Jun. 4, 2010). "... in partial fulfillment of the requirements for the degree of Master of Science in the department of Oral and Maxillofacial Radiology." Discipline: Oral and Maxillofacial Radiology; Department/School: Dentistry.
Allareddy, Veeratrishul. "Incidental findings on cone beam computed tomography." Thesis, University of Iowa, 2009. https://ir.uiowa.edu/etd/457.
Full textWatson, Peter. "Scatter artifact correction in cone-beam CT images." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117080.
Full textLes images de tomodensitométrie à faisceau conique (CBCT) souffrent d'une qualité d'image inférieure en partie due aux rayonnement diffusés. Dans cet ouvrage, un algorithme Monte Carlo rapide et précis fut appliqué sur des images CBCT cliniques. En utilisant un logiciel de transport de particules à base Monte Carlo pour transporter des photons dans un CBCT où les données n'ont pas été corrigés, la contribution des photons diffusés primaires et secondaires pour chaque image fut estimée. En utilisant cet estimé, une correction fut apportée sur les données du CBCT. La méthode de correction CBCT a démontré sa capacité de mitiger les artéfacts introduient par la diffusion des photons. Les images corrigées ont montré une plus grande précision pour la reconstruction des coéfficients d'atténuation. Ces résultats suggèrent que la méthode proposée pour corriger des images CBCT fut un succès pour l'amélioration de la qualité d'images CBCT réelles, et insinuent une utilisation able des images CBCT en radiothérapie adaptative.
Doshi, Susan. "Statistical image analysis in cone-beam computed tomography." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619218.
Full textVilches, Freixas Gloria. "Dual-energy cone-beam CT for proton therapy." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI099/document.
Full textProton therapy is a promising radiation treatment modality that uses proton beams to treat cancer. Current treatment planning systems rely on an X-ray computed tomography (CT) image of the patient's anatomy to design the treatment plan. The proton stopping-power ratio relative to water (SPR) is derived from CT numbers (HU) to compute the absorbed dose in the patient. Protons are more vulnerable than photons to changes in tissue SPR in the beam direction caused by movement, misalignment or anatomical changes. In addition, inaccuracies arising from the planning CT and intrinsic to the HU-SPR conversion greatly contribute to the proton range uncertainty. In clinical practice, safety margins are added to the treatment volume to account for these uncertainties at the expense of losing organ-sparing capabilities. The use of dual-energy (DE) in proton therapy was first suggested in 2009 to better estimate the SPR with respect to single-energy X-ray imaging. The aim of this thesis work is to investigate the potential improvement in determining proton SPR using DE to reduce the uncertainty in predicting the proton range in the patient. This PhD work is applied to a new imaging device, the Imaging Ring (IR), which is a cone-beam CT (CBCT) scanner developed for image-guided radiotherapy (IGRT). The IR is equipped with a fast kV switching X-ray source, synchronized with a filter wheel, allowing for multi-energy CBCT imaging. The first contribution of this thesis is a method to calibrate a model for the X-ray source and the detector response to be used in X-ray image simulations. It has been validated experimentally on three CBCT scanners. Secondly, the investigations have evaluated the factors that have an impact on the outcome of the DE decomposition process, from the acquisition parameters to the post-processing. Both image- and projection-based decomposition domains have been thoroughly investigated, with special emphasis on projection-based approaches. Two novel DE decomposition bases have been proposed to estimate proton SPRs, without the need for an intermediate variable such as the effective atomic number. The last part of the thesis proposes an estimation of proton SPR maps of tissue characterization and anthropomorphic phantoms through DE-CBCT acquisitions with the IR. A correction for X-ray scattering has been implemented off-line, and a routine to linearly interpolate low-energy and high-energy sinograms from sequential and fast-switching DE acquisitions has been proposed to perform DE material decomposition in the projection domain with real data. DECT-derived SPR values have been compared with experimentally-determined SPR values in a carbon-ion beam
Ashfaq, Awais. "Segmentation of Cone Beam CT in Stereotactic Radiosurgery." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193107.
Full textC-arm Cone Beam CT (CBCT) system har tack vare sitt kompakta format, flexibla geometri och låga strålningsdos startat en era av inbyggda 3D bildtagningssystem för styrning av terapeutiska och kirurgiska ingripanden. Elektas Leksell Gamma Knife Icon introducerade ett integrerat CBCT-system för att bestämma patientens position för operationer och på så sätt gå in i en paradigm av ramlös stereotaktisk strålkirurgi. Även om CBCT erbjuder snabb bildtagning med hög spatiel noggrannhet så tenderar de kvantitativa värdena att störas av olika artefakter som spridning, beam hardening och cone beam effekten. Ett flertal 3D rekonstruktionsalgorithmer som försöker reducera dessa artefakter kräver en noggrann och snabb segmentering av kraniofaciala CBCT-bilder i luft, mjukvävnad och ben. Målet med den här avhandlingen är att undersöka hur djupa neurala nätverk baserade på faltning (convolutional neural networks, CNN) presterar i jämförelse med konventionella bildbehandlings- och maskininlärningalgorithmer för segmentering av CBCT-bilder. CBCT-data för träning och testning tillhandahölls av Elekta. Ett ramverk för segmenteringsalgorithmer inklusive flernivåströskling (multilevel automatic thresholding), suddig klustring (fuzzy clustering), flerlagersperceptroner (multilayer perceptron) och CNN utvecklas och testas mot fördefinerade utvärderingskriterier som pixelvis noggrannhet, statistiska tester och körtid. CNN presterade bäst i alla metriker förutom körtid. Det genomsnittliga segmenteringsfelet för CNN var 0.4% med en standardavvikelse på 0.07%, följt av suddig klustring med ett medelfel på 0.8% och en standardavvikelse på 0.12%. CNN kräver 500 sekunder jämfört med ungefär 1 sekund för den snabbaste algorithmen, flernivåströskling på lika stora CBCT-volymer. Arbetet visar CNNs förmåga att handera artefakter och brus i CBCT-bilder och bibehålla en högkvalitativ semantisk segmentering. Vidare arbete behövs dock för att förbättra presetandan hos algorithmen för att metoden ska vara applicerbar i realtidsrekonstruktionsalgorithmer.
Balasundaram, Ashok Mol André. "Cone beam computed tomography imaging of periodontal bone." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,2063.
Full textTitle from electronic title page (viewed Feb. 17, 2009). "... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Diagnostic Sciences and General Dentistry, School of Dentistry." Discipline: Diagnostic Sciences and General Dentistry; Department/School: Dentistry.
Books on the topic "Cone-beam"
Sarment, David, ed. Cone Beam Computed Tomography. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.
Full textScarfe, William C., and Christos Angelopoulos, eds. Maxillofacial Cone Beam Computed Tomography. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62061-9.
Full textCaruso, Pietro, Enzo Silvestri, and Luca Maria Sconfienza, eds. Cone Beam CT and 3D imaging. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5319-9.
Full textGonzalez, Shawneen M., ed. Interpretation Basics of Cone Beam Computed Tomography. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781119421177.
Full textKau, Chung H., Kenneth Abramovitch, Sherif Galal Kamel, and Marko Bozic. Cone Beam CT of the Head and Neck. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12704-5.
Full textComputed tomography: From photon statistics to modern cone-beam CT. Berlin: Springer, 2008.
Find full textColor atlas of cone beam volumetric imaging for dental applications. Hanover Park, IL: Quintessence Pub., 2008.
Find full textKapila, Sunil D., ed. Cone Beam Computed Tomography in Orthodontics: Indications, Insights, and Innovations. Ames, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118674888.
Full textRichter, Martinus, Francois Lintz, Cesar de Cesar Netto, Alexej Barg, Arne Burssens, and Scott Ellis. Weight Bearing Cone Beam Computed Tomography (WBCT) in the Foot and Ankle. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31949-6.
Full textScherl, Holger. Evaluation of State-of-the-Art Hardware Architectures for Fast Cone-Beam CT Reconstruction. Wiesbaden: Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-8259-2.
Full textBook chapters on the topic "Cone-beam"
Patel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki, et al. "Megavoltage Cone Beam." In Encyclopedia of Radiation Oncology, 491. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_1177.
Full textPatel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki, et al. "MV Cone Beam." In Encyclopedia of Radiation Oncology, 521. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_1186.
Full textZeichner, Samuel J. "Cone Beam CT." In Digital Technologies in Craniomaxillofacial Surgery, 47–53. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-1532-3_3.
Full textJacobson, Matthew W. "Technology and Principles of Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 1–24. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch1.
Full textLevin, Martin D. "Endodontics Using Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 211–47. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch10.
Full textVandenberghe, Bart, and David Sarment. "Periodontal Disease Diagnosis Using Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 249–69. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch11.
Full textMallya, Sanjay M., and Stuart C. White. "The Nature of Ionizing Radiation and the Risks from Maxillofacial Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 25–41. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch2.
Full textBrooks, Sharon L. "Diagnosis of Jaw Pathologies Using Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 43–64. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch3.
Full textMiracle, Aaron, and Christian Güldner. "Diagnosis of Sinus Pathologies Using Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 65–90. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch4.
Full textCevidanes, Lucia H. S., Martin Styner, Beatriz Paniagua, and João Roberto Gonçalves. "Orthodontic and Orthognathic Planning Using Cone Beam Computed Tomography." In Cone Beam Computed Tomography, 91–107. Chichester, UK: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118769027.ch5.
Full textConference papers on the topic "Cone-beam"
Hu, Hui, Robert A. Kruger, and Grant T. Gullberg. "Quantitative Cone-Beam Reconstruction." In 1989 Medical Imaging, edited by Samuel J. Dwyer III, R. Gilbert Jost, and Roger H. Schneider. SPIE, 1989. http://dx.doi.org/10.1117/12.953290.
Full textKachelriess, Marc, Michael Knaup, and Olivier Bockenbach. "Hyperfast Perspective Cone--Beam Backprojection." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.354221.
Full textLi, Ming, Nadine Abi-Jaoudeh, Ankur Kapoor, Samuel Kadoury, Sheng Xu, Niels Noordhoek, Alessandro Radaelli, Bart Carelsen, and Bradford J. Wood. "Towards cone-beam CT thermometry." In SPIE Medical Imaging, edited by David R. Holmes and Ziv R. Yaniv. SPIE, 2013. http://dx.doi.org/10.1117/12.2006851.
Full textYu, Hengyong, Yangbo Ye, and Ge Wang. "Practical cone-beam lambda tomography." In SPIE Optics + Photonics, edited by Ulrich Bonse. SPIE, 2006. http://dx.doi.org/10.1117/12.682202.
Full textYe, Yangbo, Hengyong Yu, and Ge Wang. "Skew cone beam lambda tomography." In SPIE Optics + Photonics, edited by Ulrich Bonse. SPIE, 2006. http://dx.doi.org/10.1117/12.683236.
Full textSchomberg, Hermann. "A Proposed Cone Beam Version of Electron Beam CT." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.356536.
Full textDesbat, Laurent, Rolf Clackdoyle, Louise Grezes-Besset, Catherine Mennessier, and Ivan Bricault. "Cone-Beam Imaging of Delta Functions." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.356473.
Full textNielsen, Tim, Robert Manzke, Thomas Koehler, Michael Grass, and Roland Proksa. "Iterative cardiac cone-beam CT reconstruction." In Medical Imaging 2004, edited by J. Michael Fitzpatrick and Milan Sonka. SPIE, 2004. http://dx.doi.org/10.1117/12.534847.
Full textTrousset, Yves L., Didier M. Saint-Felix, Anne Rougee, and Christine Chardenon. "Multiscale cone-beam x-ray reconstruction." In Medical Imaging '90, Newport Beach, 4-9 Feb 90, edited by Roger H. Schneider. SPIE, 1990. http://dx.doi.org/10.1117/12.18800.
Full textHsieh, Jiang, and Xiangyang Tang. "Tilted cone beam VCT reconstruction algorithm." In Medical Imaging, edited by Michael J. Flynn. SPIE, 2005. http://dx.doi.org/10.1117/12.594700.
Full textReports on the topic "Cone-beam"
Azevedo, S., P. Rizo, and P. Grangeat. Region-of-interest cone-beam computed tomography. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/125412.
Full textRemeijer, P., K. Deurloo, M. Eenink, K. Geleijns, J. Hermans, H. Van Herpt, M. Hol, et al. NCS Report 32: Quality assurance of cone-beam CT. Delft: NCS, March 2019. http://dx.doi.org/10.25030/ncs-032.
Full textChao, Ming. Automated Patient Positioning Guided by Cone-Beam CT for Prostate Radiotherapy. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada486477.
Full textChao, Ming. Automated Patient Positioning Guided by Cone-Beam CT for Prostate Radiotherapy. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada495707.
Full textGullberg, Grant T., Qiu Huang, Jiangsheng You, and Gengsheng L. Zeng. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/945943.
Full textLi, Tianfang. Automated Patient Positioning Guided by Cone-Beam CT for Prostate Radiotherapy. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada466162.
Full textCho, Seungryong. Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada480130.
Full textKlasky, Marc, Anish Lahiri, Saiprasad Ravishankar, Erik Skau, and Michelle Espy. Limited-view Cone Beam CT reconstruction using 3D Patch-based Supervised and Adversarial Learning. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1699436.
Full textAnderson, William M. Studying the Prevalence and Etiology of Class II Subdivision Malocclusion Utilizing Cone-Beam Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ad1012894.
Full textHan, Xiao, and Betty Diamond. Development of Prior Image-based, High-Quality, Low-Dose Kilovoltage Cone Beam CT for Use in Adaptive Radiotherapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada563072.
Full text