Journal articles on the topic 'Confinement or particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Confinement or particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Herrera-Velarde, Salvador, Edith C. Euán-Díaz, and Ramón Castañeda-Priego. "Ordering and Dynamics of Interacting Colloidal Particles under Soft Confinement." Colloids and Interfaces 5, no. 2 (2021): 29. http://dx.doi.org/10.3390/colloids5020029.
Full textYu, Shi, Jiaxin Wu, Xianliang Meng, Ruizhi Chu, Xiao Li, and Guoguang Wu. "Mesoscale Simulation of Bacterial Chromosome and Cytoplasmic Nanoparticles in Confinement." Entropy 23, no. 5 (2021): 542. http://dx.doi.org/10.3390/e23050542.
Full textJALALZADEH, S., and H. R. SEPANGI. "BRANE GRAVITY AND CONFINEMENT OF TEST PARTICLES." International Journal of Modern Physics A 20, no. 11 (2005): 2275–81. http://dx.doi.org/10.1142/s0217751x05024493.
Full textVernerey, Franck, and Tong Shen. "The mechanics of hydrogel crawlers in confined environment." Journal of The Royal Society Interface 14, no. 132 (2017): 20170242. http://dx.doi.org/10.1098/rsif.2017.0242.
Full textMondal, Ranajit, and Madivala G. Basavaraj. "Patterning of colloids into spirals via confined drying." Soft Matter 16, no. 15 (2020): 3753–61. http://dx.doi.org/10.1039/d0sm00118j.
Full textJeong, Eue-Jin. "QCD QED Potentials, Quark Confinement." International Journal of Fundamental Physical Sciences 12, no. 3 (2022): 29–34. http://dx.doi.org/10.14331/ijfps.2022.330153.
Full textFringes, Stefan, Felix Holzner, and Armin W. Knoll. "The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion." Beilstein Journal of Nanotechnology 9 (January 26, 2018): 301–10. http://dx.doi.org/10.3762/bjnano.9.30.
Full textKawaguchi, Misa, Tomohiro Fukui, and Koji Morinishi. "Contribution of Particle–Wall Distance and Rotational Motion of a Single Confined Elliptical Particle to the Effective Viscosity in Pressure-Driven Plane Poiseuille Flows." Applied Sciences 11, no. 15 (2021): 6727. http://dx.doi.org/10.3390/app11156727.
Full textLight, Adam D., Hariharan Srinivasulu, Christopher J. Hansen, and Michael R. Brown. "Counterintuitive Particle Confinement in a Helical Force-Free Plasma." Plasma 8, no. 2 (2025): 20. https://doi.org/10.3390/plasma8020020.
Full textTeich, Erin G., Greg van Anders, Daphne Klotsa, Julia Dshemuchadse, and Sharon C. Glotzer. "Clusters of polyhedra in spherical confinement." Proceedings of the National Academy of Sciences 113, no. 6 (2016): E669—E678. http://dx.doi.org/10.1073/pnas.1524875113.
Full textHelden, Laurent, Ralf Eichhorn, and Clemens Bechinger. "Direct measurement of thermophoretic forces." Soft Matter 11, no. 12 (2015): 2379–86. http://dx.doi.org/10.1039/c4sm02833c.
Full textHedin, Eric R. "Extradimensional confinement of quantum particles." Physics Essays 25, no. 2 (2012): 177–90. http://dx.doi.org/10.4006/0836-1398-25.2.177.
Full textAnisovich, V. V. "Color effective particles and confinement." JETP Letters 92, no. 6 (2010): 421–28. http://dx.doi.org/10.1134/s0021364010180128.
Full textCheung, P., M. F. Choi, and P. M. Hui. "Classical interacting particles in confinement." Solid State Communications 103, no. 6 (1997): 357–60. http://dx.doi.org/10.1016/s0038-1098(97)00200-7.
Full textBecton, Matthew, Jixin Hou, Yiping Zhao, and Xianqiao Wang. "Dynamic Clustering and Scaling Behavior of Active Particles under Confinement." Nanomaterials 14, no. 2 (2024): 144. http://dx.doi.org/10.3390/nano14020144.
Full textPineda-Ríos, Erick Manuel, and Rosario Paredes. "Cooper Pairs in 2D Trapped Atoms Interacting Through Finite-Range Potentials." Atoms 13, no. 1 (2025): 4. https://doi.org/10.3390/atoms13010004.
Full textLaribi, Elias, Shun Ogawa, Guilhem Dif-Pradalier, Alexei Vasiliev, and Xavier Garbet and Xavier Leoncini. "Influence of Toroidal Flow on Stationary Density of Collisionless Plasmas." Fluids 4, no. 3 (2019): 172. http://dx.doi.org/10.3390/fluids4030172.
Full textLiu, Bing-Rui, Jian-Zhong Lin, and Xiao-Ke Ku. "Migration and Alignment of Three Interacting Particles in Poiseuille Flow of Giesekus Fluids." Fluids 6, no. 6 (2021): 218. http://dx.doi.org/10.3390/fluids6060218.
Full textLiu, Peng, Hongwei Zhu, Ying Zeng, et al. "Oscillating collective motion of active rotors in confinement." Proceedings of the National Academy of Sciences 117, no. 22 (2020): 11901–7. http://dx.doi.org/10.1073/pnas.1922633117.
Full textSunol, Alp M., and Roseanna N. Zia. "Confined Brownian suspensions: Equilibrium diffusion, thermodynamics, and rheology." Journal of Rheology 67, no. 2 (2023): 433–60. http://dx.doi.org/10.1122/8.0000520.
Full textCao, Juanhua, and Yafang Zhang. "Analysis and Investigation of Diffusion-Induced Stress in Lithium-Ion Particle Through Elastic-Viscoplastic Model of Binder." Batteries 11, no. 4 (2025): 132. https://doi.org/10.3390/batteries11040132.
Full textNinomiya, H., K. Tobita, U. Schneider, G. Martin, W. W. Heidbrink, and Ya I. Kolesnichenko. "Energetic particles in magnetic confinement systems." Nuclear Fusion 40, no. 7 (2000): 1287–91. http://dx.doi.org/10.1088/0029-5515/40/7/201.
Full textGünter, S. "Energetic particles in magnetic confinement systems." Nuclear Fusion 48, no. 8 (2008): 080201. http://dx.doi.org/10.1088/0029-5515/48/8/080201.
Full textZhang, Yichao, Haifeng Liu, Jie Huang та ін. "Suppression of non-axisymmetric field-induced α-particle loss channels in a quasi-axisymmetric stellarator". AIP Advances 12, № 5 (2022): 055214. http://dx.doi.org/10.1063/5.0079827.
Full textKang, Dong Woo, Mina Lee, Kyung Hak Kim, Ming Xia, Sang Hyuk Im, and Bum Jun Park. "Electrostatic interactions between particles through heterogeneous fluid phases." Soft Matter 13, no. 37 (2017): 6647–58. http://dx.doi.org/10.1039/c7sm01309d.
Full textMosiori, Cliff Orori. "Effects of Quantum Confinements in Tin Sulphide Nanocrystals Produced by Wet-Solution Technique." Asia Pacific Journal of Energy and Environment 6, no. 1 (2019): 37–42. http://dx.doi.org/10.18034/apjee.v6i1.261.
Full textSTICHEL, P. C., and W. J. ZAKRZEWSKI. "POSSIBLE CONFINEMENT MECHANISMS FOR NONRELATIVISTIC PARTICLES ON A LINE." Modern Physics Letters A 16, no. 29 (2001): 1919–32. http://dx.doi.org/10.1142/s0217732301005278.
Full textOrdonez, C. A. "Magnetic confinement of effectively unmagnetized plasma particles." Physics of Plasmas 27, no. 12 (2020): 122501. http://dx.doi.org/10.1063/5.0030215.
Full textChen, Wei, and Zheng-Xiong Wang. "Energetic Particles in Magnetic Confinement Fusion Plasmas." Chinese Physics Letters 37, no. 12 (2020): 125001. http://dx.doi.org/10.1088/0256-307x/37/12/125001.
Full textBonofiglo, P. J., D. W. Dudt, and C. P. S. Swanson. "Fast ion confinement in quasi-axisymmetric stellarator equilibria." Nuclear Fusion 65, no. 2 (2025): 026050. https://doi.org/10.1088/1741-4326/ada56d.
Full textCorral Arroyo, Pablo, Grégory David, Peter A. Alpert, Evelyne A. Parmentier, Markus Ammann, and Ruth Signorell. "Amplification of light within aerosol particles accelerates in-particle photochemistry." Science 376, no. 6590 (2022): 293–96. http://dx.doi.org/10.1126/science.abm7915.
Full textXiao, Mufei, and Nikifor Rakov. "Size and temperature dependent plasmons of quantum particles." International Journal of Modern Physics B 29, no. 21 (2015): 1550146. http://dx.doi.org/10.1142/s0217979215501465.
Full textGiuliatti Winter, S. M., G. Madeira, and R. Sfair. "Neptune’s ring arcs confined by coorbital satellites: dust orbital evolution through solar radiation." Monthly Notices of the Royal Astronomical Society 496, no. 1 (2020): 590–97. http://dx.doi.org/10.1093/mnras/staa1519.
Full textZHANG Shuchen and WAN Duanduan. "Effects of Allowing Temporary Overlaps During Compression on the Packing Density and Configuration of Hard Particle Systems." Acta Physica Sinica 74, no. 16 (2025): 0. https://doi.org/10.7498/aps.74.20250552.
Full textLangdon, A. Bruce. "Computer simulations of absorption and scattering." Canadian Journal of Physics 64, no. 8 (1986): 993–97. http://dx.doi.org/10.1139/p86-169.
Full textXiao, Yun-Feng. "Microcavity-enhanced photoacoustic vibrational spectroscopy of single particles." Journal of the Acoustical Society of America 155, no. 3_Supplement (2024): A158. http://dx.doi.org/10.1121/10.0027152.
Full textVegt, Wim. "The Transformation of LIGHT into MATTER." European Journal of Engineering Research and Science 4, no. 11 (2019): 52–69. http://dx.doi.org/10.24018/ejers.2019.4.11.1631.
Full textVegt, Wim. "Transformation of LIGHT into MATTER." European Journal of Engineering and Technology Research 4, no. 11 (2019): 52–69. http://dx.doi.org/10.24018/ejeng.2019.4.11.1631.
Full textFily, Yaouen, Aparna Baskaran, and Michael F. Hagan. "Dynamics of self-propelled particles under strong confinement." Soft Matter 10, no. 30 (2014): 5609–17. http://dx.doi.org/10.1039/c4sm00975d.
Full textWilliams, Ian, Erdal C. Oğuz, Hartmut Löwen, Wilson C. K. Poon, and C. Patrick Royall. "The rheology of confined colloidal hard disks." Journal of Chemical Physics 156, no. 18 (2022): 184902. http://dx.doi.org/10.1063/5.0087444.
Full textLiu, Zhaogang, Mei Li, Yanhong Hu, Hai Fu, Mitang Wang, and Zaiyong Jiang. "DISPERSION AND MECHANICAL PROPERTIES OF CERIUM OXIDE FILLED INTO RUBBER COMPOSITES." Rubber Chemistry and Technology 87, no. 2 (2014): 340–47. http://dx.doi.org/10.5254/rct.13.86993.
Full textChow, Edmond, and Jeffrey Skolnick. "Effects of confinement on models of intracellular macromolecular dynamics." Proceedings of the National Academy of Sciences 112, no. 48 (2015): 14846–51. http://dx.doi.org/10.1073/pnas.1514757112.
Full textZhang, Jianping, and Baodong Ren. "Influence of magnetic field and working voltage on the tripping performance in spherical cylindrical ECP." E3S Web of Conferences 261 (2021): 02033. http://dx.doi.org/10.1051/e3sconf/202126102033.
Full textMisconi, Nebil Y. "New technique for levitating solid particles using a proton beam." Laser and Particle Beams 14, no. 3 (1996): 501–10. http://dx.doi.org/10.1017/s026303460001017x.
Full textKremeyer, Thierry, R. König, S. Brezinsek, et al. "Analysis of hydrogen fueling, recycling, and confinement at Wendelstein 7-X via a single-reservoir particle balance." Nuclear Fusion 62, no. 3 (2022): 036023. http://dx.doi.org/10.1088/1741-4326/ac4acb.
Full textPol, Antonio, Riccardo Artoni, Patrick Richard, Paulo Ricardo Nunes da Conceição, and Fabio Gabrieli. "Kinematics and shear-induced alignment in confined granular flows of elongated particles." New Journal of Physics, June 30, 2022. http://dx.doi.org/10.1088/1367-2630/ac7d6d.
Full textBoyd, Jarrett, Gram Hepner, Maxwell Ujhazy, Shawn Bliss, and Melikhan Tanyeri. "Dual hydrodynamic trap based on coupled stagnation point flows." Physics of Fluids 35, no. 6 (2023). http://dx.doi.org/10.1063/5.0150089.
Full textMiron, Asaf. "Local resetting with geometric confinement." Journal of Physics A: Mathematical and Theoretical, November 11, 2022. http://dx.doi.org/10.1088/1751-8121/aca22e.
Full textLauricella, Giuseppe, Jian Zhou, Qiyue Luan, Ian Papautsky, and Zhangli Peng. "Computational study of inertial migration of prolate particles in a straight rectangular channel." Physics of Fluids, July 28, 2022. http://dx.doi.org/10.1063/5.0100963.
Full textSamukcham, Jimpaul, Thokchom Premkumar Meitei, and Lenin S. Shagolsem. "Energy polydisperse fluid under cylindrical confinement." Physics of Fluids 36, no. 9 (2024). http://dx.doi.org/10.1063/5.0218639.
Full text