Academic literature on the topic 'Confocal scanning laser microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Confocal scanning laser microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Confocal scanning laser microscopy"

1

J. H., Youngblom, Wilkinson J., and Youngblom J.J. "Telepresence Confocal Microscopy." Microscopy and Microanalysis 6, S2 (August 2000): 1164–65. http://dx.doi.org/10.1017/s1431927600038319.

Full text
Abstract:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments. While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.At California State University-Stanislaus, home of the CSUPERB (California State University Program for Education and Research in Biotechnology) Confocal Microscope Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system. Our Leica TCS NT confocal system, with an interchangeable upright (DMRXE) and inverted microscope (DMIRBE) set up,
APA, Harvard, Vancouver, ISO, and other styles
2

Youngblom, J. H., J. Wilkinson, and J. J. Youngblom. "Telepresence Confocal Microscopy." Microscopy Today 8, no. 10 (December 2000): 20–21. http://dx.doi.org/10.1017/s1551929500054146.

Full text
Abstract:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments, While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.
APA, Harvard, Vancouver, ISO, and other styles
3

Paddock, Stephen W. "Confocal Laser Scanning Microscopy." BioTechniques 27, no. 5 (November 1999): 992–1004. http://dx.doi.org/10.2144/99275ov01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HASEGAWA, Hirokazu. "Laser Scanning Confocal Microscopy." Kobunshi 55, no. 12 (2006): 961–65. http://dx.doi.org/10.1295/kobunshi.55.961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Youngblom, J. H., J. Wilkinson, and J. J. Youngblom. "Confocal Laser Scanning Microscopy By Remote Access." Microscopy Today 7, no. 7 (September 1999): 32–33. http://dx.doi.org/10.1017/s1551929500064798.

Full text
Abstract:
In recent years there have been a growing number of facilities interested in developing remote access capabilities to a variety of microscopy systems. While certain types of microscopes, such as electron microscopes and scanning probe microscopes have been well established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal microscope.At California State University, home to the CSUPERB (California State University Program for Education and Research in Biotechnology) Confocal Microscope Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system.
APA, Harvard, Vancouver, ISO, and other styles
6

Yimei Huang, Yimei Huang, Hongqin Yang Hongqin Yang, Xiuqiu Shen Xiuqiu Shen, Yuhua Wang Yuhua Wang, Liqin Zheng Liqin Zheng, Hui Li Hui Li, and Shusen Xie Shusen Xie. "Visualizing NO in live cells by confocal laser scanning microscopy." Chinese Optics Letters 10, s1 (2012): S11701–311703. http://dx.doi.org/10.3788/col201210.s11701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Youngblom, Janey H., James J. Youngblom, and Jerry Wilkinson. "TelePresence Confocal Laser Scanning Microscopy." Microscopy and Microanalysis 7, no. 3 (May 2001): 241–48. http://dx.doi.org/10.1007/s100050010073.

Full text
Abstract:
AbstractThe advent of the Internet has allowed the development of remote access capabilities to a growing variety and number of microscopy systems. To date, the confocal microscope has not been included among these systems. At the California State University (CSU) Confocal Microscopy Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system. Our Leica TCS NT confocal system is accessible to any authorized user via the Internet by using a free software program called VNC (Virtual Network Computing). Once connectivity is established, remote users are able to control virtually all the functions to conduct real-time image analysis and quantitative assessments of their specimen. They can also move the motorized stage to view different regions of their specimen by using a software program associated with the stage. At the end of the session, all files generated during the session can be downloaded to the user’s computer from a link on the CSU confocal website. A number of safeguard features have been developed to ensure security and privacy of data acquired during a remote session.
APA, Harvard, Vancouver, ISO, and other styles
8

Raarup, Merete Krog, and Jens Randel Nyengaard. "QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY." Image Analysis & Stereology 25, no. 3 (May 3, 2011): 111. http://dx.doi.org/10.5566/ias.v25.p111-120.

Full text
Abstract:
This paper discusses recent advances in confocal laser scanning microscopy (CLSM) for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm) tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer), FLIM (Fluorescence Lifetime Imaging Microscopy), FCS (Fluorescence Correlation Spectroscopy) and FRAP (Fluorescence Recovery After Photobleaching) are introduced and their applicability for quantitative imaging of biomolecular (co-)localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Youngblom, Janey H., James J. Youngblom, and Jerry Wilkinson. "TelePresence Confocal Laser Scanning Microscopy." Microscopy and Microanalysis 7, no. 03 (May 2001): 241–48. http://dx.doi.org/10.1017/s1431927601010248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bayguinov, Peter O., Dennis M. Oakley, Chien-Cheng Shih, Daniel J. Geanon, Matthew S. Joens, and James A. J. Fitzpatrick. "Modern Laser Scanning Confocal Microscopy." Current Protocols in Cytometry 85, no. 1 (June 20, 2018): e39. http://dx.doi.org/10.1002/cpcy.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Confocal scanning laser microscopy"

1

Pankajakshan, Praveen. "Blind deconvolution for confocal laser scanning microscopy." Nice, 2009. http://www.theses.fr/2009NICE4057.

Full text
Abstract:
La microscopie confocale à balayage laser est une technique puissante pour étudier les spécimens biologiques en trois dimensions (3D) par sectionnement optique. Bien qu’ubiquitaire, il persiste des incertitudes dans le procédé d’observations. Comme la réponse du système à l’impulsion, ou fonction de flou (PSF), est dépendante à la fois du spécimen et des conditions d’acquisition, elle devrait être estimée à partir des images observées avec l’objet. Ce problème est mal posé, sous déterminé, et comme le processus de mesure est quasi-aléatoire dans la nature, nous le traitons en utilisant l’interférence bayésienne. L’état de l’art des algorithmes concernant la déconvolution et déconvolution aveugle est exposé dans le cadre d’un travail bayésien. Dans la première partie, nous constatons que la diffraction limitée de l’objectif et le bruit intrinsèque, sont les distorsions primordiales qui affectent les images d’un spécimen fin. Une approche de minimalisation alternative (AM), restaure les fréquences manquantes au-delà de la limite de diffraction, en utilisant une régularisation de la variation totale sur l’objet, et une contrainte spatiale sur la PSF. En outre, des méthodes sont proposées pour assurer la positivité des intensités estimées, conserver le flux de l’objet, et bien manier le paramètre de la régularisation. Quand il s’agit d’imager des spécimens épais, la phase de la fonction de la pupille, due à l’aberration sphérique (SA) ne peut être ignorée. Dans la seconde partie, il est montré qu’elle dépend de la discordance de l’index de réfraction entre l’objet et le milieu d’immersion de l’objectif et de la profondeur sur la lamelle. Les paramètres d’imagerie et la distribution de l’intensité originelle de l’objet sont récupérés en modifiant les algorithmes AM. Due à l’incohérence de la microscopie à fluorescence, la phase de récupération des intensités observées est possible en contraignant la phase par l’utilisation d’optiques géométriques. Cette méthode pourrait être étendue pour restituer des spécimens affectés par la SA. Comme la PSF varie dans l’espace, un modèle de quasi-convolution est proposé, et la PSF est rendue approximative. Ainsi, en plus de l’objet, il suffit d’estimer un seul libre paramètre
Confocal laser scanning microscopy is a powerful technique for studying biological specimens in three dimensions (3D) by optical sectioning. Although ubiquitous, there are uncertainties in the observation process. As the system’s impulse response or point-spread function (PSF) is dependent on both the specimen and imaging conditions, it should be estimated from the observed images along with the object. This problem is ill-posed, under-determined, and as the measurement process is quasi-random in nature, we treat the problem by using Bayesian inference. The state of the art déconvolution and blind déconvolution algorithms are reviewed within a Bayesian framework. In the first part, we recognize that the diffraction-limited nature of the objective lens and the intrinsic noise are the primary distortions that affect this specimen images. An alternative minimization (AM) approach restores the lost frequencies beyond the diffraction limit by using a total variation regularization on the objet, and a spatial constraint on the PSF. Additionally, some methods are proposed to ensure positivity of estimated intensities, conserve the object’s flux, and to handle the regularization parameter. When imaging thick specimens, the phase of the pupil function due to spherical aberration (SA) cannot be ignored; It is shown to be dependent on the refractive index mismatch between the object and the objective immersion medium, and the depth under the cover slip. The imaging parameters and the object’s original intensity distribution is recovered by modifying the AM algorithm. Due to the incoherent nature of fluorescence microscopy, phase retrieval from the observed intensities is possible by constraining the phase using geometrical optics. This method could be extended to restore specimens affected by SA. As the PSF is space varying, a quasi-convolution model is proposed, and the PSF approximated so that, apart from the object, there is only one free parameter to be estimated
APA, Harvard, Vancouver, ISO, and other styles
2

Zator, Maria Malgorzata. "Membrane fouling characterization by confocal scanning laser microscopy." Doctoral thesis, Universitat Rovira i Virgili, 2009. http://hdl.handle.net/10803/8580.

Full text
Abstract:
En sectores tan diversos como la industria alimentaria, la biotecnología y el tratamiento de aguas residuales, la filtración tangencial con membranas se viene utilizando de forma creciente en la separación, purificación y clarificación de distintas corrientes de proceso que contienen gran variedad de compuestos orgánicos. La limitación principal para el empleo industrial de las técnicas de separación por membranas es el ensuciamiento de éstas. El ensuciamiento se atribuye, de forma general, a la reducción en el diámetro de los poros, a su bloqueo y/o a la formación de un depósito en la superficie de la membrana. El avance en el desarrollo de técnicas para la caracterización, el control y la prevención del ensuciamiento de las membranas ha estado limitado por la falta de técnicas adecuadas y no invasivas para la medición del ensuciamiento. El objetivo principal del presente proyecto es desarrollar estrategias apropiadas para aplicar microscopía láser confocal de barrido (CSLM) al estudio del ensuciamiento de membranas de filtración, centrándose en el ensuciamiento causado por macromoléculas biológicas. En la tesis se han llevado a cabo experimentos de microfiltración (MF) de soluciones modelo puras y de mezclas de proteínas, polisacáridos y polifenoles. Las imágenes captadas mediante CSLM de las membranas al final de diferentes experimentos de filtración, han servido para obtener información cualitativa, sobre localización de las distintas moléculas, y cuantitativa, sobre la presencia individual de cada compuesto en el interior y la superficie de la membrana. Se han realizado también intentos de aplicación de visualización en línea mediante CSLM del proceso de microfiltración.
In fields such as the food and dairy industries, biotechnology, and the treatment of industrial effluents, pressure-driven membrane processes such as microfiltration are increasingly being used for the separation, purification and clarification of protein-containing solutions. A major limitation to the widespread use of membrane filtration, however, is fouling. Fouling is usually attributed to pore constriction, pore blocking or the deposition of cells and cell debris on the membrane surface and can lead to a reduction in the filtrate flux of more than an order of magnitude. Progress in developing a means for characterizing, controlling and preventing membrane fouling has been impeded by lack of suitable non-invasive fouling-measurement techniques. The main aim of this study is to develop suitable strategies for applying Confocal Scanning Laser Microscopy (CSLM) to characterise membrane fouling caused by biological macromolecules. Microfiltration experiments of single, binary and ternary model solutions of proteins, polysaccharides and polyphenols were carried out and CSLM images of the membranes at the end of the different filtration runs were obtained, in order to obtain quantitative and qualitative information about fouling patterns. Some trials of on-line monitoring of cross-flow microfiltration processes were also carried out.
APA, Harvard, Vancouver, ISO, and other styles
3

Boruah, Bosanta Ranjan. "Programmable diffractive optics for laser scanning confocal microscopy." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/11911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yildiz, Bilge Can. "Imaging Of Metal Surfaces Using Confocal Laser Scanning Microscopy." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613641/index.pdf.

Full text
Abstract:
Optical imaging techniques have improved much over the last fifty years since the invention of the laser. With a high brightness source many imaging applications which were once inaccessible to researchers have now become a reality. Among these techniques, the most beneficial one is the use of lasers for both wide-field and confocal imaging systems. The aim of this study was to design a laser imaging system based on the concept of laser scanning confocal microscopy. Specifically the optical system was based on optical fibers allowing the user to image remote areas such as the inner surface of rifled gun barrels and/or pipes with a high degree of precision (+/- 0.01 mm). In order to build such a system, initially the theoretical foundation for a confocal as well as a wide-field imaging system was analyzed. Using this basis a free-space optical confocal system was built and analyzed. The measurements support the fact that both the objective numerical aperture and pinhole size play an important role in the radial and axial resolution of the system as well as the quality of the images obtained. To begin construction of a confocal, optical-fiber based imaging system first an all fiber wide-field imaging system was designed and tested at a working wavelength of 1550 nm. Then an all fiber confocal system was designed at a working wavelength of 808 nm. In both cases results showed that while lateral resolution was adequate, axial resolution suffered since it was found that the design of the optical system needs to take into account under-filling of the objective lens, a result common with the use of laser beams whose divergence is not at all like that of a point source. The work done here will aid technology that will be used in the elimination process of faulty rifling fabrication in defense industry. The reason why the confocal technique is preferred to the conventional wide-field one is the need for better resolution in all directions. Theoretical concepts and mathematical background are discussed as well as the experimental results and the practical advantages of such a system.
APA, Harvard, Vancouver, ISO, and other styles
5

Luedtke, Michael A. Papazoglou Elisabeth S. "Wavelength effects on in vivo confocal scanning laser microscopy/." Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/2518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Shihong. "Non-scanning fluorescence confocal microscopy using laser speckle illumination." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10139/.

Full text
Abstract:
Confocal scanning microscopy (CSM) is a much used and advantageous form of microscopy. Although CSM is superior to conventional microscopy in many respects, a major disadvantage is the complexity of the scanning process and the sometimes long time to perform the scan. In this thesis a novel non-scanning fluorescence confocal microscopy is investigated. The method uses a random time-varying speckle pattern to illuminate the specimen, recording a large number of independent full-field frames without the need for a scanning system. The recorded frames are then processed in a suitable way to give a confocal image. The goal of this research project is to confirm the effectiveness and practicality of speckle-illumination microscopy and to develop this proposal into a functioning microscope system. The issues to be addressed include modelling of the system performance, setting up experiments, computer control and image processing. This work makes the following contributions to knowledge: * The development of criteria for system performance evaluation * The development of methods for speckle processing, whereby the number of frames required for an image of acceptable quality can be reduced * The implementation of non-scanning fluorescence confocal microscopy based upon separate recording of the speckle patterns and the fluorescence frames, demonstrating the practicality and effectiveness of this method * The realisation of real-time image processing by optically addressed spatial light modulator, showing how this new form of optical arrangement may be used in practice The thesis is organised into three main segments. Chapters 1-2 review related work and introduce the concepts of fluorescence confocal microscopy. Chapters 3-5 discuss system modelling and present results of performance evaluation. Chapters 6-8 present experimental results based upon the separate recording scheme and the spatial light modulation scheme, draw conclusions and offer some speculative suggestions for future research.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghafari, H. "Confocal laser scanning microscopy of nanoparticles applied to immunosorbent assays." Thesis, Nottingham Trent University, 2011. http://irep.ntu.ac.uk/id/eprint/57/.

Full text
Abstract:
The aim of this project was to demonstrate and develop a confocal readout method for fluorescent immunosorbent assays and investigate its potential advantages in comparison to traditional immunoassays. The key point of a confocal immunosorbent assay is the ability to detect the thin layer of immunoassay in the presence of unbound fluorescent reagents without washing the overlayer. Heterogeneous and homogeneous sandwich immunoassays of human IgG model were demonstrated successfully followed by the use of an empirical decomposition method for quantitative separation of the signals of the thin fluorescent assay layer from the overlayer. The detection limits for the homogeneous and heterogeneous formats of the model were 2.2 and 5.5 ng/ml, respectively. The application of confocal microscopy in kinetic analysis of the antigen-antibody reaction of the human IgG model was studied for homogeneous and heterogeneous formats and two fluorescent labels antibodies (FITC and QDs). The association rates of binding of FITC and QD605 conjugated antibodies to human IgG on prepared surfaces were 5.7×104 and 2.6×104 (M-1s-1) respectively. Confocal detection immunosorbent assay enables the detection of more than one assay along the z-axis. By replacing standard substrates with multiple 30 :m layers of substrates, a high density array of immunosorbent assays was created within a stratified medium. Stacks of up to five modified thin mica substrates of model immunoassays were detected by confocal microscopy. When applied to model assays consisting of human and mouse IgGs on different layers, the z-axis multiplexing of immunosorbant assays was demonstrated. The arrays of multiplexed immunosorbent assays were extended to 3D format by using microcontact printing and the assay density was increased twice by detecting the stack of two substrates which each contained two IgGs assays.
APA, Harvard, Vancouver, ISO, and other styles
8

Moss, Martin Christopher. "Investigations of in-vitro dental plaques using confocal laser scanning microscopy." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tefft, John. "The Study of Coating and Ink Penetration into Coating Structures Using a Confocal Laser Scanning Microscope." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/TefftJ2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Esposito, Elric. "Nonlinear optical frequency conversion based soures for improved confocal laser scanning microscopy." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Confocal scanning laser microscopy"

1

David, Shotton, and Royal Microscopical Society, eds. Confocal laser scanning microscopy. Oxford: BIOS Scientific in association with the Royal Microscopical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Division, Bio-Rad Microscopy. MRC-1024: Laser scanning confocal imaging system : user operating manual, Issue 2.0. Hemel Hempstead: Bio-Rad Microscopy Division, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guthoff, Rudolf F., Christophe Baudouin, and Joachim Stave. Atlas of Confocal Laser Scanning In-vivo Microscopy in Ophthalmology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32707-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brandt, Roland, and Lidia Bakota. Laser scanning microscopy and quantitative image analysis of neuronal tissue. New York: Humana Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guthoff, Rudolf. Atlas of confocal laser scanning in-vivo microscopy in opthalmology [i.e. ophthalmology]: Principles and applications in diagnostic and therapeutic ophtalmology [i.e. ophthalmology]. Berlin: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Corle, Timothy R. Confocal scanning optical microscopy and related imaging systems. San Diego: Academic Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marinello, Francesco. Acoustic Scanning Probe Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bakota, Lidia, and Roland Brandt, eds. Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0381-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

International, Meeting on Scanning Laser Ophthalmoscopy Tomography and Microscopy (7th 1999). Seventh International Meeting on Scanning Laser Ophthalmoscopy, Tomography, and Microscopy. Boston: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Atomic and molecular manipulation. Amsterdam: Elsevier, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Confocal scanning laser microscopy"

1

Wannemacher, Reinhold. "Confocal Laser Scanning Microscopy." In Encyclopedia of Nanotechnology, 1–21. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_34-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peroulis, Dimitrios, Prashant R. Waghmare, Sushanta K. Mitra, Supone Manakasettharn, J. Ashley Taylor, Tom N. Krupenkin, Wenguang Zhu, et al. "Confocal Laser Scanning Microscopy." In Encyclopedia of Nanotechnology, 500–516. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vergara-Irigaray, Nuria, Michèle Riesen, Gianluca Piazza, Lawrence F. Bronk, Wouter H. P. Driessen, Julianna K. Edwards, Wadih Arap, et al. "Laser Scanning Confocal Microscopy." In Encyclopedia of Nanotechnology, 1192. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masters, Barry R. "Confocal Laser Scanning Microscopy." In Handbook of Coherent Domain Optical Methods, 895–947. New York, NY: Springer US, 2004. http://dx.doi.org/10.1007/0-387-29989-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wannemacher, Reinhold. "Confocal Laser Scanning Microscopy." In Encyclopedia of Nanotechnology, 673–91. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Olivier, Thomas, and Baptiste Moine. "Confocal Laser Scanning Microscopy." In Optics in Instruments, 1–77. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118574386.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hanrahan, Orla, James Harris, and Chris Egan. "Advanced Microscopy: Laser Scanning Confocal Microscopy." In Methods in Molecular Biology, 169–80. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-289-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paddock, Stephen W., and Kevin W. Eliceiri. "Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques." In Confocal Microscopy, 9–47. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-60761-847-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diaspro, Alberto, Paolo Bianchini, Francesca Cella Zanacchi, and Cesare Usai. "Confocal Laser Scanning Fluorescence Microscopy." In Encyclopedia of Biophysics, 362–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kihm, Kenneth D. "Confocal Laser Scanning Microscopy (CLSM)." In Near-Field Characterization of Micro/Nano-Scaled Fluid Flows, 55–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20426-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Confocal scanning laser microscopy"

1

Zinser, G., R. W. Wijnaendts-van-Resandt, and C. Ihriq. "Confocal Laser Scanning Microscopy For Ophthalmology." In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tomáštík, Jan, Hana Šebestová, Radim Čtvrtlík, and Petr Schovánek. "Laser scanning confocal microscopy in materials engineering." In 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, edited by Jan Peřina, Libor Nozka, Miroslav Hrabovský, Dagmar Senderáková, Waclaw Urbańczyk, and Ondrej Haderka. SPIE, 2012. http://dx.doi.org/10.1117/12.2010259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pankajakshan, Praveen, Bo Zhang, Laure Blanc-Feraud, Zvi Kam, Jean-Christophe Olivo-Marin, and Josiane Zerubia. "Parametric Blind Deconvolution for Confocal Laser Scanning Microscopy." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ode, Takahiro, and Satoshi Komiya. "Three-dimensional quantification with laser scanning confocal microscopy." In Electronic Imaging Device Engineering, edited by Leo Beiser and Reimar K. Lenz. SPIE, 1993. http://dx.doi.org/10.1117/12.165183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boruah, B. R., and M. A. A. Neil. "Programmable diffractive optics for laser scanning confocal microscopy." In Biomedical Optics (BiOS) 2007, edited by Jose-Angel Conchello, Carol J. Cogswell, and Tony Wilson. SPIE, 2007. http://dx.doi.org/10.1117/12.700611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chernyaeva, Elena B., Jan Greve, Bart G. de Grooth, and A. G. Van Leeuwen. "Intracellular phthalocyanine localization: confocal laser scanning microscopy studies." In Europto Biomedical Optics '93, edited by Adolf F. Fercher, Aaron Lewis, Halina Podbielska, Herbert Schneckenburger, and Tony Wilson. SPIE, 1994. http://dx.doi.org/10.1117/12.167421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Birk, Holger, Johann Engelhardt, Rafael Storz, Nicole Hartmann, Joachim Bradl, and Heinrich Ulrich. "Programmable beam-splitter for confocal laser scanning microscopy." In International Symposium on Biomedical Optics, edited by Jose-Angel Conchello, Carol J. Cogswell, and Tony Wilson. SPIE, 2002. http://dx.doi.org/10.1117/12.467841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beghuin, D., M. vandeVen, M. Ameloot, D. Claessens, and P. Van Oostveldt. "Compact laser scanning confocal microscope." In Optical Metrology, edited by Heidi Ottevaere, Peter DeWolf, and Diederik S. Wiersma. SPIE, 2005. http://dx.doi.org/10.1117/12.611819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KUKHARENKO, L. V., T. KOSHIKAWA, O. V. ALEINIKOVA, T. V. SHMAN, and N. G. TSIRKUNOVA. "LEUKEMIC CELLS STUDY WITH SCANNING FORCE AND CONFOCAL LASER SCANNING MICROSCOPY." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KUKHARENKO, L. V., Th SCHIMMEL, S. WALHEIM, T. KOSHIKAWA, N. G. TSIRKUNOVA, O. V. ALEINIKOVA, and T. V. SHMAN. "K562 CELLS STUDY WITH SCANNING FORCE AND CONFOCAL LASER SCANNING MICROSCOPY." In Proceedings of the International Conference on Nanomeeting 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814280365_0126.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Confocal scanning laser microscopy"

1

Galbraith, David. Final Report: Confocal Laser Scanning Microscope, April 15, 1995 - April 14, 1997. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/765740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kwon, Chuhee. Characterizing Coated Conductors with Variable Temperature Scanning Laser Microscopy (SLM). Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada492446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wickramaratne, Chathuri, Emily Sappington, and Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, June 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography