Academic literature on the topic 'Conic sections'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conic sections.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conic sections"
Olmstead, Eugene A., and Arne Engebretsen. "Technology Tips: Exploring the Locus Definitions of the Conic Sections." Mathematics Teacher 91, no. 5 (May 1998): 428–34. http://dx.doi.org/10.5951/mt.91.5.0428.
Full textLaywine, Alison. "Kant on conic sections." Canadian Journal of Philosophy 44, no. 5-6 (December 2014): 719–58. http://dx.doi.org/10.1080/00455091.2014.977835.
Full textGermain-McCarthy, Yvelyne. "Circular Graphs: Vehicles for Conic and Polar Connections." Mathematics Teacher 88, no. 1 (January 1995): 26–28. http://dx.doi.org/10.5951/mt.88.1.0026.
Full text.., Hamiyet, and Mohammad Abobala. "The Application of AH-Isometry in the Study of Neutrosophic Conic Sections." Galoitica: Journal of Mathematical Structures and Applications 2, no. 2 (2022): 18–22. http://dx.doi.org/10.54216/gjmsa.020203.
Full textLi, Zhiguang. "Problem-solving teaching strategies from the perspective of dividing the core literacy of mathematical operations." BCP Education & Psychology 6 (August 25, 2022): 207–13. http://dx.doi.org/10.54691/bcpep.v6i.1791.
Full textSaid, Arwan Mhd. "Menentukan Bentuk Kuadrat Bagian Kerucut Dan Permukaan Kuadratik dengan Menggunakan Matriks." Foramadiahi: Jurnal Kajian Pendidikan dan Keislaman 8, no. 1 (December 1, 2016): 47. http://dx.doi.org/10.46339/foramadiahi.v8i1.42.
Full textSiegel, Lauren. "Crafting Conic Sections." Math Horizons 29, no. 2 (November 8, 2021): 29. http://dx.doi.org/10.1080/10724117.2021.1978760.
Full textDray, Tevian, and Corinne A. Manogue. "Electromagnetic conic sections." American Journal of Physics 70, no. 11 (November 2002): 1129–35. http://dx.doi.org/10.1119/1.1501115.
Full textLayton, William. "Regarding conic sections." Physics Teacher 52, no. 2 (February 2014): 68–69. http://dx.doi.org/10.1119/1.4862099.
Full textKorotkiy, Viktor. "Contact Conic Sections." Геометрия и графика 4, no. 3 (September 19, 2016): 36–45. http://dx.doi.org/10.12737/21532.
Full textDissertations / Theses on the topic "Conic sections"
Zharkov, Sergei. "Conic structures in differential geometry." Thesis, Connect to e-thesis, 2000. http://theses.gla.ac.uk/1005/.
Full textIncludes bibliographical references (p.86-88). Print version also available. Mode of access : World Wide Web. System requirements : Adobe Acrobat reader required to view PDF document.
Naeve, Trent Phillip. "Conics in the hyperbolic plane." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3075.
Full textGolipour-Koujali, M. "General rendering and antialiasing algorithms for conic sections : a GCE analysis." Thesis, London South Bank University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434558.
Full textMcKinney, Colin Bryan Powell. "Conjugate diameters: Apollonius of Perga and Eutocius of Ascalon." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/711.
Full textKhalfallah, Hazem. "Mordell-Weil theorem and the rank of elliptical curves." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3119.
Full textPENCHEL, RAFAEL ABRANTES. "Synthesis of Offset Reflector Antennas Using Conic Sections and Confocal Quadric Surfaces." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24631@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O presente trabalho propõe técnicas numéricas para a síntese de antenas refletoras que utilizando seções de cônicas ou superfícies quádricas confocais. Para tal, utilizando os princípios da Óptica Geométrica, foram desenvolvidos algoritmos capazes de sintetizar as superfícies refletoras desejadas. São analisadas duas geometrias distintas: a antena duplo-refletora com cobertura omnidirecional e a antena refletora offset com um único refletor. No primeiro problema, é apresentado um método alternativo para a síntese geométrica de antenas duplo-refletoras com cobertura omnidirecional e diagrama de radiação arbitrário no plano de elevação. O subrefletor é um corpo de revolução gerado por uma única seção cônica e o refletor principal modelado é gerado por uma série de seções cônicas locais sequencialmente concatenadas. Para ilustrar o método, duas configurações axialmente simétrica são sintetizadas para proporcionar diagramas de radiação uniforme ou cossecante ao quadrado no plano de elevação. Os resultados são validados por uma técnica híbrida baseada em Casamento de Modos e o Método de Momentos. No segundo problema, é investigado um procedimento numérico alternativo para a síntese geométrica de antenas refletoras offset com diagrama de radiação arbitrário na região de campo distante. O método usa superfícies quádricas confocais com eixos deslocados para representar localmente a superfície modelada. Nesta abordagem, um operador não linear deve ser resolvido como um problema de contorno. Para ilustrar o método, são apresentadas antenas modeladas para prover diagrama de radiação Gaussiano em contornos de cobertura circular, elíptico e super-elíptico.
This work proposes numerical techniques for synthesis of reflector antennas, using conic sections or confocal quadric surfaces. Under Geometrical Optics principles, algorithms to shape desired reflective surfaces have been developed. Two different geometries have been considered: omnidirectional dual-reflector antenna and single offset reflector antennas. In the first problem, it was presented an alternative method for synthesis of omnidirectional dual-reflector antennas with an arbitrary radiation pattern in elevation plane. The body-of-revolution subreflector is generated by a single conic section, while the shaped main reflector is generated by a series of local conic sections, sequentially consecutively concatenated. In order to illustrate the method, omnidirectional axisdisplaced ellipse (OADE) and Cassegrain (OADC) configurations are synthesized to provide uniform or cosecant squared radiation pattern in the elevation plane. The GO shaping results are validated by a hybrid technique based on Mode Matching and Method of Moments. In the second problem, an alternative numerical procedure was investigated for the geometrical synthesis of offset reflector antennas with an arbitrary radiation pattern in the far-field region, according to geometrical optics. The method uses local axis-displaced confocal quadric surfaces to describe the shaped reflector. In this approach, a nonlinear operator must be solved as a boundary value problem. To illustrate the method, we have chosen several offset configurations with circular, elliptical and super-elliptical contour coverage and Gaussian power density. The results were validated by the physical optics approximation.
Lui, Ka-wai, and 呂嘉蕙. "Study of conic sections and prime numbers in China: cultural influence on the development, application andtransmission of mathematical ideas." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29499240.
Full textSeedahmed, Gamal H. "On the suitability of conic sections in a single-photo resection, camera calibration, and photogrammetric triangulation." Columbus, Ohio Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1073186865.
Full textTitle from first page of PDF file. Document formatted into pages; contains xix, 138 p.; also includes graphics (some col). Includes abstract and vita. Advisor: Anton F. Schenk, Dept. of Geodetic Science and Surveying. Includes bibliographical references (p. 130-138).
Farinholt, Kevin. "Modal and Impedance Modeling of a Conical Bore for Control Applications." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35560.
Full textMaster of Science
Ma, Min-Yuan Esclangon Felix Kravtchenko Julien. "Sur le calcul des pièces coniques de révolution travaillant à la flexion." S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00277384.
Full textBooks on the topic "Conic sections"
Oldknow, A. J. Conic sections. Bognor Regis: Mathematics Education Centre, West Sussex Institute of Higher Education, 1985.
Find full textDowns, J. W. Practical conic sections. Palo Alto, CA: D. Seymour Publications, 1993.
Find full textBaltus, Christopher. Collineations and Conic Sections. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46287-1.
Full textSalmon, George. A treatise on conic sections. 6th ed. Providence, RI: AMS Chelsea Pub., 2005.
Find full textReyes, Manuel Sobrino. Las cónicas como equidistancias: Una nueva caracterización. Valladolid, Spain: Instituto de Ciencias de la Educación, Universidad de Valladolid, 1991.
Find full textVladimirovich, Habelashvili Albert. Problem by Apollonius from Perga. Pererva: A.V. Habelashvili, 1994.
Find full textKendig, Keith. Conics. [Washington, D.C.]: Mathematical Association of America, 2005.
Find full textBook chapters on the topic "Conic sections"
Ostermann, Alexander, and Gerhard Wanner. "Conic Sections." In Geometry by Its History, 61–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29163-0_3.
Full textStillwell, John. "Conic Sections." In Numbers and Geometry, 247–79. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_8.
Full textLandi, Giovanni, and Alessandro Zampini. "Conic Sections." In Undergraduate Lecture Notes in Physics, 293–327. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78361-1_16.
Full textLiu, Andy. "Conic Sections." In Springer Texts in Education, 55–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71743-2_3.
Full textGoddijn, Aad, Martin Kindt, and Wolfgang Reuter. "Conic sections." In Geometry with Applications and Proofs, 331–41. Rotterdam: SensePublishers, 2014. http://dx.doi.org/10.1007/978-94-6209-860-2_22.
Full textPamfilos, Paris. "Conic sections." In Lectures on Euclidean Geometry - Volume 2, 317–98. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-48910-5_6.
Full textHerrmann, Dietmar. "Conic Sections." In Ancient Mathematics, 231–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-66494-0_14.
Full textPrewett, Philip. "The Conic Sections." In Foundation Mathematics for Science and Engineering Students, 79–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91963-4_8.
Full textGorini, Catherine A. "The Conic Sections." In Geometry for the Artist, 99–108. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003110972-10.
Full textBaltus, Christopher. "Conic Sections in Early Modern Europe. Second Part: Philippe de la Hire on Conics." In Collineations and Conic Sections, 71–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46287-1_6.
Full textConference papers on the topic "Conic sections"
Foreman, J. W. "Conic sections revisited." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mt4.
Full textCardona-Nunez, O., A. Cornejo-Rodriguez, R. Diaz-Uribe, J. Pedraza-Contreras, and A. Cordero-Davila. "Conic that best fits an off-axis conic section." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wm2.
Full textSolares, Cristina, and Rocío Blanco. "VIDEOS AND MATLAB FOR TEACHING CONIC SECTIONS." In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.1241.
Full textКарабчевский, Виталий, and Vitaliy Karabchevskiy. "The research of conic sections in AutoCAD environment." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-1-188-190.
Full textUlmer, Melville P., Robert I. Altkron, Michael E. Graham, Anita Madan, and Yong S. Chu. "Production and performance of multilayer coated conic sections." In International Symposium on Optical Science and Technology, edited by Paul Gorenstein and Richard B. Hoover. SPIE, 2002. http://dx.doi.org/10.1117/12.454365.
Full textCaligaris, Marta, María Schivo, María Romiti, and Matías Menchise. "CUSTOM TOOLS FOR ANALYTIC GEOMETRY: THE CONIC SECTIONS." In International Technology, Education and Development Conference. IATED, 2017. http://dx.doi.org/10.21125/inted.2017.0082.
Full textAzizian, K., P. Cardou, and B. Moore. "On the Boundaries of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28135.
Full textEl Hamdi, Dhekra, Mai K. Nguyen, Hedi Tabia, and Atef Hamouda. "Image Analysis based on Radon-type Integral Transforms Over Conic Sections." In International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006613403560362.
Full textMoreira, Fernando J. S., and Jose R. Bergmann. "Shaping Axis-Symmetric Dual-Reflector Antennas by consecutively concatenating conic sections." In 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). IEEE, 2009. http://dx.doi.org/10.1109/imoc.2009.5427566.
Full textZioga, M., M. Mikeli, A. Eleftheriou, Ch Pafilis, A. N. Rapsomanikis, and E. Stiliaris. "ComptonRec: Mastering conic sections for a direct 3D compton image reconstruction." In 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015. http://dx.doi.org/10.1109/nssmic.2015.7582117.
Full textReports on the topic "Conic sections"
Tooman, Tricia, Waraf Al-Yaseen, Damon Herd, Clio Ding, Maria Corrales, and Jaina Teo Lewen. THE COVID ROLLERCOASTER: Multiple and Multi-dimensional Transitions of Healthcare Graduates. Edited by Divya Jindal-Snape, Chris Murray, and Nicola Innes. UniVerse, May 2022. http://dx.doi.org/10.20933/100001247.
Full text