Academic literature on the topic 'Conical antennas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conical antennas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conical antennas"
Wang, Wei, Xue Tian Wang, Ying Li, and Song Song. "Design of an Ultra-Wideband Four Arms Sinuous Antenna." Advanced Materials Research 981 (July 2014): 469–73. http://dx.doi.org/10.4028/www.scientific.net/amr.981.469.
Full textHuang, W. N., Y. J. Cheng, and H. Deng. "Substrate Integrated Waveguide Leaky-Wave Antenna Conforming to Conical Shape Surface." International Journal of Antennas and Propagation 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/359670.
Full textN, Likith, Gayathri K M, Thusshara S, Maria Sanjeetha, and Thangadurai N. "Design & Analysis of S-Band Right Hand Circularly Polarized Conical Horn Antenna for NavIC Receiver." International Journal of Engineering & Technology 7, no. 3.12 (July 20, 2018): 512. http://dx.doi.org/10.14419/ijet.v7i3.12.16169.
Full textHirose, Kazuhide, Kazuhiko Hata, and Hisamatsu Nakano. "Modified Crossed-Wire Antennas Radiating a Circularly Polarized Conical Beam." International Journal of Antennas and Propagation 2020 (February 24, 2020): 1–7. http://dx.doi.org/10.1155/2020/2759312.
Full textKawakami, Haruo, Gentei Sato, Takeshi Watanabe, and Ryoji Wakabayashi. "Circularly polarized conical beam antennas." Electronics and Communications in Japan (Part I: Communications) 78, no. 5 (May 1995): 66–80. http://dx.doi.org/10.1002/ecja.4410780507.
Full textKong, Rong, Dong Lin Su, and Qiu Yuan Lv. "Analysis for Radiation Characteristics of Horn Antenna for Out of Band." Advanced Materials Research 383-390 (November 2011): 2935–40. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.2935.
Full textGivati, O., and A. P. C. Fourie. "Analysis of skeletal wire conical antennas." IEEE Transactions on Antennas and Propagation 44, no. 6 (June 1996): 844–58. http://dx.doi.org/10.1109/8.509888.
Full textGentili, G. B., M. Cerretelli, and L. Cecchi. "COATED CONICAL ANTENNAS FOR AUTOMOTIVE APPLICATION." Journal of Electromagnetic Waves and Applications 18, no. 1 (January 2004): 85–97. http://dx.doi.org/10.1163/156939304322749689.
Full textHertel, Thorsten W., and Glenn S. Smith. "Analysis of conical log-periodic antennas." Microwave and Optical Technology Letters 36, no. 1 (December 13, 2002): 28–32. http://dx.doi.org/10.1002/mop.10661.
Full textCong, Lin, Lixin Xu, Jianhua Li, Ting Wang, and Qi Han. "The conical conformal MEMS quasi-end-fire array antenna." Modern Physics Letters B 31, no. 07 (March 10, 2017): 1750115. http://dx.doi.org/10.1142/s0217984917501159.
Full textDissertations / Theses on the topic "Conical antennas"
SILVA, DENISE FREITAS. "APPLICATION METHOD OF MOMENTS FOR THE ANALYSIS OF CONICAL ANTENNAS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7300@1.
Full textNeste estudo faz-se uma análise do desempenho de antenas cônicas compactas para operar em largas bandas de freqüência. Esta análise será feita observando o comportamento da impedância da antena. Serão, primeiramente, consideradas as estruturas convencionais formadas por cones e cones sobrepostos próximos a um plano condutor. Posteriormente, será considerada uma estrutura cônica onde o arredondamento das bordas resulta em um comportamento mais uniforme para a impedância de entrada com variações da freqüência, conferindo um aumento na banda para esta configuração.
The discone antenna is well known as an easy to build multioctave broadband antenna with a omnidirectional radiation pattern in the H-plane, It comprises a plane conductive disc element spaced close to and axially aligned with a conductive cone element. For applications in the UHF and microwave ranges, high performance antennas have been designed to operate from 0.5 to 5 GHz with a VSWR of about 3.5:1 or less. If the length is finite, the impedance still strongly dependent on apex angle as long as the cone is longer than about quarter of wavelength and the apex angle is relatively larger. A problem that is experienced with these antenna designs is the relatively large size required to operate at the low frequencies. In applications where utilization of this antenna. In this work, the analysis and design of these antenna is obtained by employing a rigorous formulation of the electromagnetic scattering problem. As a design tool, we employ Method of Moments for the analysis of rotationally symmetric structures excited by TEM mode. To properly account the variations in driven-point impedance with frequency, the coaxial waveguide used to feed the antenna is also included in the analysis. The excitation is simulated by a distribution of equivalent electric and magnetic currents placed inside the coaxial cable, over a cross-section plane. These currents are defined such that only excite the mode TEM towards the cable-antenna junction. These numerical tool is employed in the shaping the metallic surfaces involved in the discone-type antennas in order to obtain more compact structures. Simple solutions can be easily obtained making the center fed cone and the disc element with radially outer edge portions rolled backwardly and away from each other to form donut-shaped configurations. The ruled edges not only reduce the diameter of the antenna but also permit the current to flow around them smoothly and without reflections that degrade the VSWR at low end of the frequency band.
Hertel, Thorsten Walter. "Analysis and design of conical spiral antennas in free space and over ground." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15018.
Full textLiu, Xueli. "Origami Antennas for Novel Reconfigurable Communication Systems." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3644.
Full textKhalil, Khaled. "Investigation, design and implementation of circular-polarised antennas for satellite mobile handset and wireless communications : simulation and measurement of microstrip patch and wire antennas for handheld satellite mobile handsets and investigations of polarization polarity, specific absorption rate, and antenna design optimization using genetic algorithms." Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/4319.
Full textCheng, Po-Kai. "NeXtRAD antenna design: X-Band dual polarised conical horn antenna." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/20511.
Full textDouvalis, Vassileios. "Monolithic millimetre-submillimetre wave active conical horn antenna arrays." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414468.
Full textMulenga, Charity Basaza. "The application of periodic structures to conical antenna design." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/33631.
Full textClauzier, Sébastien. "Conception et réalisation d'antennes intégrables en mâture pour les plateformes navales : applications aux communications V/UHF et à un radar de navigation à balayage électronique en bande X." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S067.
Full textThe need to communicate and detect potential enemies increases with the extension of maritime conflicts. This need impacts directly the number of antennas on naval platforms. However, this increase of aerials leads to several damaging effects: like coupling or high radar signature. To limit this effect, some companies have developed integrated mast design. This structure limits the coupling effect between aerials by a subdivision of the mast and provides an omnidirectional coverage for all antennas inserted inside the mast. The objective of the thesis is to design two antenna systems for the compact integrated mast (CmastTM) developed by the Constructions Mécanique de Normandie (CMN): a communication antenna in the V/UHF band and an electronically scanning antenna for a maritime navigation radar in X-band. For the communication in the V/UHF band, a broadband conical antenna has been developed (225-400MHz). This antenna provides an optimized radiation pattern to insure the communications between the ship and the aircrafts. An experimental validation has been done with a prototype. In the second study, we have developed an electronically scanning antenna for a navigation radar. This antenna is based on a transmit-array technology including an illuminating feed and an antenna which generates the appropriate radiation pattern. A large part of the study has been done on the feed, which illuminates an array with specific dimensions (1530mmx100mm). Three different near-field focusing feeds have been developed and some of them have been validated experimentally. Then, two architectures of transmit-array antennas have been studied, using two different technologies: printed technology and a mixed technology with waveguide and horn
Magnusson, Patrick. "Antenna for GNSS Reception in GEO-Orbit." Thesis, KTH, Rymd- och plasmafysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149283.
Full textDet finns ett antal världstäckande navigeringssystem (GNSS), i användning och planerade, som används för navigation på jorden fast också för autonom navigation för satelliter i låg bana runt jorden. Det skulle också vara önskvärt att använda autonom navigation för satelliter i geostationär omloppsbana (GEO) för att reducera kostnaden och få högre positions noggrannhet. En del av navigationssystemet är GNSS antennen vilken är undersökt i detta examensarbete. Specifikationerna för antennen bestämdes först och sedan undersöktes tre olika antennalternativ i detalj: en monofilär helixantenn, en tre elements cirkulär gruppantenn och en tolv elements cirkulär gruppantenn. Resultatet var att alla alternativen skulle fungera som en GNSS antenn i GEO-bana fast inget av alternativen är bäst i alla förhållanden. Storlekskraven för uppdraget och vilken GNSS mottagare som skall användas påverkar vilket av alternativen som passar uppdraget bäst.
Descardeci, Jose Ricardo. "Antena de microfita sobre substrato conico." [s.n.], 1991. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261183.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-07-14T01:51:52Z (GMT). No. of bitstreams: 1 Descardeci_JoseRicardo_M.pdf: 3868112 bytes, checksum: 2184fb222cc010a66c9430f3980954b0 (MD5) Previous issue date: 1991
Resumo: É apresentada neste trabalho a análise teórica de uma antena de microfita sobre um substrato cônico. A análise utiliza o modelo de cavidades com paredes laterais magnéticas na determinação da frequência de ressonância e impedância de a teoria das funções diádicas de Green, juntamente com as expressões assintóticas das funções esféricas de Hankel do segundo tipo, na obtenção dos campos distantes radiados pela antena. São apresentados também exemplos de antenas, operando no modo fundamental TM 01 e obtidos resultados para a frequencia de ressonância , impedância de entrada e diagrama de radiação do campo radiado distante. 0:1e resultados para a freqUência de ressonância, impedância de entrada e diagrama de radiação do campo radiado di stante. entrada da antena, e, juntamente com as esféricas de Hank el dist.antes radiados
Abstract: A theoretical analysis of a microstrip antenna on a conical substrate is presented. The cavity model with magnetic side walls is used for the calculation of the antenna resonant frequency and input impedance and the dyadic Green's functions formulation, in conjunction with asymptotic expressions of spher i cal Hank el functions of second type, are used for the calculation of the radiated fields in the far field region of the antenna. Some antennas, operating in the TM 01 mode were chosen as examples and numerical results for the resonant frequency, input impedance and radiation pattern were obtained.
Mestrado
Mestre em Engenharia Elétrica
Books on the topic "Conical antennas"
24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textE, Cross A., and Langley Research Center, eds. 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textE, Cross A., and Langley Research Center, eds. 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textE, Cross A., and Langley Research Center, eds. 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textBook chapters on the topic "Conical antennas"
Hu, Huilin, Yunhua Tan, Bocheng Zhu, and Lezhu Zhou. "Radiation Analysis of Dielectric Conical Conformal Log-Spiral Antennas." In Lecture Notes in Electrical Engineering, 981–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21747-0_127.
Full textGeng, Junping. "A Circular Truncated Cone Slot Antenna with Circular Polarized Conical Beam." In Omnidirectional Slots Antenna, 113–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9089-4_6.
Full textLu, Mingyu, Jonathan W. Bredow, Sungyong Jung, and Saibun Tjuatja. "A Quasi-Planar Wide Band Conical Antenna." In Ultra-Wideband Short-Pulse Electromagnetics 8, 25–32. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-73046-2_4.
Full textQu, Xiao-Yun, Wei-Hua Zong, Zhi-Qun Yang, and Jian-Ming Mu. "The Design of Shaped-Beam Bifilar Helix Antenna with Conical Pattern." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 287–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29157-9_27.
Full textSiddiqui, Rehan Ahmed, Bishal Mishra, and Malay Ranjan Tripathy. "Conical Conformal Antenna Array Using SIW Backed Feeding Technique for X Band Applications." In Asset Analytics, 421–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3643-4_34.
Full textAdachi, Saburo. "Conical Antennas." In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme057.
Full textZhang, Zhiya, Masood Ur-Rehman, Xiaodong Yang, Erchin Serpedin, Aifeng Ren, Shaoli Zuo, Atiqur Rahman, and Qammer Hussain Abbasi. "Broadband Antennas." In Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications, 27–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8645-8.ch002.
Full textKobayashi, Hirokazu. "Horn Antenna." In Advances in Environmental Engineering and Green Technologies, 144–77. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2381-0.ch008.
Full textS., George. "Simulated Performance of Conical Antennas Using Matlab-Based Finite-Difference Time Domain (FDTD) Code." In Scientific and Engineering Applications Using MATLAB. InTech, 2011. http://dx.doi.org/10.5772/21482.
Full textConference papers on the topic "Conical antennas"
Yang, Fang, Peng Zhang, Chen Jiang Guo, and Jia Dong Xu. "Conical beam control of arbitrary conical spiral antennas." In 2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006. http://dx.doi.org/10.1109/isape.2006.353456.
Full textVsetula, Petr, and Zbynek Raida. "Sierpinski conical monopole antennas." In 2010 15th Conference on Microwave Techniques (COMITE 2010). IEEE, 2010. http://dx.doi.org/10.1109/comite.2010.5481272.
Full textSaintsing, Christy D., Benjamin S. Cook, and Manos M. Tentzeris. "An Origami Inspired Reconfigurable Spiral Antenna." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35353.
Full textSabino, Vanine, Daniel B. Ferreira, Odilon M. C. Pereira-Filho, and Luiz C. da Silva. "Input Impedance of Conical Microstrip Antennas." In 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2019. http://dx.doi.org/10.1109/iceaa.2019.8879015.
Full textFang, Yang, Guo Chen-Jiang, Xu Jia-Dong, Xie Chun-Jian, and Ding You-Jun. "Backfire/Endfire conical beam properties of conical spiral antennas with arbitrary configurations." In 2007 International Conference on Microwave and Millimeter Wave Technology. IEEE, 2007. http://dx.doi.org/10.1109/icmmt.2007.381302.
Full textSabino, V., and O. M. C. Pereira-Filho. "Cavity-backed annular conical antenna." In 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017. http://dx.doi.org/10.23919/eucap.2017.7928780.
Full textLevin, Boris, Motti Haridim, and Stefan Chulski. "Transparent antenna with conical feed." In 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2013. http://dx.doi.org/10.1109/comcas.2013.6685244.
Full textYu Yu Kyi, Li Jianying, and Gan Yeow Beng. "Study of Broadband Small Size Conical Antennas." In 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, 2006. http://dx.doi.org/10.1109/aps.2006.1710977.
Full textChen Chen, Fang Yang, Chenjiang Guo, and Jiadong Xu. "Simulation of Monifilar Archimedean conical spiral antennas." In 2008 International Conference On Microwave and Millimeter Wave Technology. IEEE, 2008. http://dx.doi.org/10.1109/icmmt.2008.4540598.
Full textNie, Li Ying, Xian Qi Lin, Jin Zhang, Yi Hong Su, and Bao Wang. "A Composite Antenna Comprising Conical-Beam Slotted Cavity and Patch Antennas." In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). IEEE, 2018. http://dx.doi.org/10.1109/ucmmt45316.2018.9015674.
Full textReports on the topic "Conical antennas"
Farr, Everett G., and W. S. Bigelow. A Conical Slot Antenna and Related Antennas Suitable for Use with an Aircraft with Inflatable Wings. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada434746.
Full textReilly, Michael P., George H. Miley, David E. Kirtley, Justin Koo, Jr Hargus, and William A. Effects of Helicon Wave Propagation Based on a Conical Antenna Design: Part I (Preprint). Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada473488.
Full text