Academic literature on the topic 'Conjoint analysis (Marketing)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conjoint analysis (Marketing).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conjoint analysis (Marketing)"
Martin, John, and Thomas E. Moore. "Conjoint Analysis:." Journal of Marketing for Higher Education 4, no. 1-2 (July 22, 1993): 379–403. http://dx.doi.org/10.1300/j050v04n01_26.
Full textVriens, Marco. "Solving marketing problems with conjoint analysis∗." Journal of Marketing Management 10, no. 1-3 (April 1994): 37–55. http://dx.doi.org/10.1080/0267257x.1994.9964259.
Full textRao, Vithala R., and Luis Eduardo Pilli. "Conjoint Analysis para Pesquisa de Marketing no Brasil." Revista Brasileira de Marketing 13, no. 4 (September 11, 2014): 25–38. http://dx.doi.org/10.5585/remark.v13i4.2707.
Full textArora, Raj. "Formulating direct marketing offers with conjoint analysis." Journal of Direct Marketing 5, no. 1 (1991): 48–56. http://dx.doi.org/10.1002/dir.4000050108.
Full textBeall, Ron, and Leslie W. Perttula. "Conjoint Analysis: A Pedagogical Model." Journal of Marketing Education 13, no. 3 (December 1991): 76–82. http://dx.doi.org/10.1177/027347539101300309.
Full textDubas, Khalid M., and James T. Strong. "Course Design Using Conjoint Analysis." Journal of Marketing Education 15, no. 1 (April 1993): 31–36. http://dx.doi.org/10.1177/027347539301500105.
Full textFletcher, Keith. "An Analysis of Choice Criteria Using Conjoint Analysis." European Journal of Marketing 22, no. 9 (September 1988): 25–33. http://dx.doi.org/10.1108/eum0000000005298.
Full textKim, Dong Soo, Roger A. Bailey, Nino Hardt, and Greg M. Allenby. "Benefit-Based Conjoint Analysis." Marketing Science 36, no. 1 (January 2017): 54–69. http://dx.doi.org/10.1287/mksc.2016.1003.
Full textChristian Zinkhan, F., and George M. Zinkhan. "Using Conjoint Analysis to Design Financial Services." International Journal of Bank Marketing 8, no. 1 (January 1990): 31–34. http://dx.doi.org/10.1108/02652329010136389.
Full textMandloi, Anita. "Conjoint Analysis and its Applications in Marketing Research." International Journal of Mathematics Trends and Technology 68, no. 3 (March 25, 2022): 43–44. http://dx.doi.org/10.14445/22315373/ijmtt-v68i3p508.
Full textDissertations / Theses on the topic "Conjoint analysis (Marketing)"
Turner, Julia P. "University preference : A conjoint analysis." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 1999. https://ro.ecu.edu.au/theses/1245.
Full textEvans, Callie Bryan Fields Deacue. "Consumer preferences for watermelons a conjoint analysis /." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Agricultural_Economics_and_Rural_Sociology/Thesis/Evans_Callie_53.pdf.
Full textBarbosa, Eduardo Campana. "Inferência via Bootstrap na Conjoint Analysis." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/17847.
Full textMade available in DSpace on 2018-02-22T18:20:05Z (GMT). No. of bitstreams: 1 texto completo.pdf: 826585 bytes, checksum: 3724f9d33c7d0253426d44dc0a59b8fc (MD5) Previous issue date: 2017-12-14
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A presente tese teve como objetivo introduzir o método de reamostragem com reposição ou Bootstrap na Conjoint Analysis. Apresenta-se no texto uma revisão conceitual (Revisão de Literatura) sobre a referida metodologia (Conjoint Analysis) e também sobre o método proposto (Bootstrap). Adicionalmente, no Capítulo I e II, define-se a parte teórica e metodológica da Conjoint Analysis e do método Bootstrap, ilustrando o funcionamento conjunto dessas abordagens via aplicação real, com dados da área de tecnologia de alimentos. Inferências adicionais que até então não eram fornecidas no contexto clássico ou frequentista podem agora ser obtidas via análise das distribuições empíricas dos estimadores das Importâncias Relativas (abordagem por notas) e das Probabilidades e Razão de Escolhas (abordagem por escolhas). De forma geral, os resultados demonstraram que o método Bootstrap forneceu estimativas pontuais mais precisas e tornou ambas as abordagens da Conjoint Analysis mais informativas, uma vez que medidas de erro padrão e, principalmente, intervalos de confiança puderam ser facilmente obtidos para certas quantidades de interesse, possibilitando a realização de testes ou comparações estatísticas sobre as mesmas.
The aim of this thesis was introduce the Booststrap resampling method in Conjoint Analysis. We present in the text a conceptual review (Literature Review) about this methodology (Conjoint Analysis) and also about the proposed method (Bootstrap). In addition, in Chapter I and II, the theoretical and methodological aspects of Conjoint Analysis and the Bootstrap method are defined, illustrating the joint operation of these approaches via real application, with data from the food technology area.. Additional inferences have not been provided in the classic or frequentist context can now be obtained by analyzing the empirical distributions of Relative Importance (ratings based approach) and Probability and Choice Ratio (choice based approach) estimators. Overall, the results demonstrated that the Bootstrap method provided more accurate point estimates and made both Conjoint Analysis approaches more informative, since standard error measures, and mainly confidence intervals, could be easily obtained for certain quantities of interest, making it possible to perform statistical tests or comparisons on them.
Barbosa, Eduardo Campana. "Choice-Based Conjoint Analysis: um enfoque bayesiano." Universidade Federal de Viçosa, 2015. http://www.locus.ufv.br/handle/123456789/7179.
Full textMade available in DSpace on 2016-01-20T10:10:28Z (GMT). No. of bitstreams: 1 texto completo.pdf: 868133 bytes, checksum: fc299d68c5ac708f6318353d62153283 (MD5) Previous issue date: 2015-02-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A presente dissertação teve como objetivo principal demonstrar um enfoque Bayesiano para a metodologia Choice-Based Conjoint Analysis (CBCA). Apresenta-se no texto uma ampla revisão sobre a CBCA (Capítulo 1), sobre o modelo Logit Multinomial [desenvolvimento do modelo, procedimentos de estimação de parâmetros, probabilidades e razões de escolha (Capítulo 2)] e sobre o enfoque de estimação Bayesiano [distribuição a priori utilizada, aproximação de Laplace para a função de verossimilhança, distribuições a posteriori e detalhes sobre o algoritmo MCMC empregado (Capítulo 3)]. No Capítulo 4 apresenta-se um exemplo hipotético, no intuito de demonstrar os resultados e inferências que podem ser obtidos por meio desta recente abordagem (Bayesiana), sendo também apresentados os resultados do enfoque Frequentista. O tratamento em estudo foi um tipo de refrigerante e avaliou-se o efeito de três fatores (A, B e C) na intenção de compra de 96 consumidores, por meio de dados simulados. As análises estatísticas foram conduzidas no software livre R, cujos scripts encontram-se disponibilizados nos apêndices desta dissertação. Concluiu-se que a abordagem Bayesiana para CBCA apresentou resultados interessantes e satisfatórios, com estimativas similares às Frequentistas e mostrando-se uma alternativa metodológica viável para os estudos de CBCA. Adicionalmente, a abordagem proposta possibilitou ainda ao pesquisador construir intervalos de credibilidade (percentis das distribuições a posteriori) para as probabilidades e razões de escolha, no intuito de comparar estas quantidades ou testar hipóteses sobre estas. Quanto aos resultados práticos, a maior probabilidade de escolha estava associada ao tratamento 4, composto pelo nível do fator A, nível do fator B e nível do fator C.
This dissertation main goal is to demonstrate the Bayesian approach to Choice-Based Conjoint Analysis (CBCA). We present a comprehensive review of the CBCA methodology (Chapter 1), on the Multinomial Logit model [model development, parameter estimation procedures, probabilities of choice ratios (Chapter 2)] and on the Bayesian estimation approach [prior distribution, Laplace approach to the likelihood function, posterior distributions and details about the MCMC algorithm we applied (Chapter 3)]. In Chapter 4 we present a hypothetical example, in order to demonstrate the results and inferences that can be obtained through this recent approach (Bayesian), and we also present the results of the frequentist approach. The treatment for the study was a type of refrigerant (soda or soft drink) and we evaluated the effect of three factors (volume, type and color) on purchase intention of 96 consumers, using simulated data. Statistical analyzes were conducted with the free software R, whose scripts are provided in the appendices of this dissertation. It was concluded that the Bayesian approach to CBCA presented interesting and satisfactory results, with estimates similar to the frequentist ones, therefore proved to be a viable alternative methodology for CBCA studies. Additionally, the proposed approach also allows the researcher to build credibile intervals (percentiles of the posterior distributions) for the probabilities and choice ratios, in order to compare these quantities or test hypotheses about them. In terms of practical or applied results, the highest estimated probability of choice was obtained for treatment 4, with a1 level of factor A, b2 level of factor B and C1 level of factor C.
Winzar, Hume. "A Monte-Carlo evaluation of conjoint preference simulators." Thesis, The University of Sydney, 1994. https://hdl.handle.net/2123/27562.
Full textWong, Shing-tat. "Disaggregate analyses of stated preference data for capturing parking choice behavior." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36393678.
Full textGustafsson, Anders. "Customer focused product development by conjoint analysis and QFD /." Online version, 1996. http://bibpurl.oclc.org/web/31484.
Full textHeger, Roland Helmut. "Value Measurement for New Product Category: a Conjoint Approach to Eliciting Value Structure." PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/1305.
Full textSiqueira, Jose de Oliveira. "Mensuração da estrutura de preferência do consumidor: uma aplicacao de conjoint analysis em marketing." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/12/12133/tde-01032005-185221/.
Full textThe purpose of this dissertation is the consumers preference structure (CPS). The general objective is to study the methods of mensurement of CPS (MMCPS) and its main purpose is to measure that structure using the statistical technique Conjoint Analysis (CA). The CA provides a realistic way to measure the impact of the attribute of a product on the consumers preference. This statistical technique is being used more and more in marketing problems. Some softwares have emerged and increased the use of this technique. This dissertation discusses a real application of this technique on the problem of definition of a linen tissue for a specialist group. The emphasis is on the design of a fractional factorial experiment for estimation of a individual model in wich the response variable is rank and the attributes are qualitative. Linear models of a cell of reference and deviations were constructed for the experimental analysis. Used one a non satureded linear model. Some of the main softwares were analysed: SPSS, SAS, ACA, CBC and CVA. The author defines a software project for optimum fractional factorial experimental design and analysis, according to D-efficiency. MMCPS studies can provide the following contribution to Management: products/services/concepts optimization, CPS quantification, marketing segmentation, choice probability determination on the expected participation of the products/services/concepts market in a particular scenario and the simulation (prediction) of individual and aggregate preferences.
Tan, Donald. "The impact of numeric sub-branding on Singaporean Chinese consumers : a conjoint analysis." University of Western Australia. Graduate School of Management, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0029.
Full textBooks on the topic "Conjoint analysis (Marketing)"
Reibstein, David J. Conjoint analysis reliability: Empirical findings. Cambridge, MA: Marketing Science Institute, 1987.
Find full textReibstein, David J. Conjoint analysis reliability: Empirical findings. Cambridge, Mass: Marketing Science Institute, 1987.
Find full textReibstein, David J. Conjoint analysis reliability: Empirical findings. [Stanford]: Graduate School of Business, Stanford University, 1985.
Find full textL, Moore William. Using conjoint analysis to help design product platforms. Cambridge, Mass: Marketing Science Institute, 1998.
Find full textVyas, Preeta H. Measuring consumer preferences for sales promotion schemes through conjoint design in FMCG sector. Ahmedabad: Indian Institute of Management, 2005.
Find full textRathnow, Peter J. Integriertes Variantenmanagement: Bestimmung, Realisierung und Sicherung der optimalen Produktvielfalt. Göttingen: Vandenhoeck & Ruprecht, 1993.
Find full textAnderson, James Lavalette. A conjoint approach to model product preferences: The New England market for fresh and frozen salmon. Kingston, RI: University of Rhode Island, Dept. of Resource Economics, 1992.
Find full textCastro, Eduardo Anselmo de. Malthus revisited: The economics and politics of sustainable development. St. Andrews: St. Salvator's College, 1996.
Find full textBernd, Schubert. Entwicklung von Konzepten für Produktinnovationen mittels Conjointanalyse. Stuttgart: C.E. Poeschel, 1991.
Find full textSattler, Henrik. Herkunfts- und Gütezeichen im Kaufentscheidungsprozess: Die Conjoint-Analyse als Instrument der Bedeutungsmessung. Stuttgart: M & P, 1991.
Find full textBook chapters on the topic "Conjoint analysis (Marketing)"
Rao, Vithala R. "Applications to a Miscellany of Marketing Problems." In Applied Conjoint Analysis, 317–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-87753-0_9.
Full textWedel, Michel, and Wagner A. Kamakura. "Product-Specific Unobservable Bases: Conjoint Analysis." In International Series in Quantitative Marketing, 295–321. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4651-1_18.
Full textHauser, John R., and Vithala R. Rao. "Conjoint Analysis, Related Modeling, and Applications." In International Series in Quantitative Marketing, 141–68. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-28692-1_7.
Full textSattari, Setayesh, Tim Foster, Kaveh Peighambari, and Arash Kordestani. "Preferences of Young News Consumers: A Conjoint Analysis." In Developments in Marketing Science: Proceedings of the Academy of Marketing Science, 595–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10951-0_216.
Full textGreen, Paul E., Abba M. Krieger, and Yoram Wind. "Thirty Years of Conjoint Analysis: Reflections and Prospects." In International Series in Quantitative Marketing, 117–39. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-28692-1_6.
Full textMulye, Rajendra. "Commercial Use of Conjoint Analysis in Australia and New Zealand." In Developments in Marketing Science: Proceedings of the Academy of Marketing Science, 95–100. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17320-7_24.
Full textAgarwal, Manoj K. "An Empirical Comparison of Traditional Full-Profile Conjoint and Adaptive Conjoint Analysis." In Proceedings of the 1991 Academy of Marketing Science (AMS) Annual Conference, 351–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17049-7_72.
Full textGreen, Paul E., and Abba M. Krieger. "Product Line Price Optimization With Conjoint Analysis." In Proceedings of the 1992 Academy of Marketing Science (AMS) Annual Conference, 273–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13248-8_57.
Full textHille, Stefanie Lena, Andrea Tabi, and Rolf Wüstenhagen. "Market Segmentation for Green Electricity Marketing Results of a Choice-Based Conjoint Analysis with German Electricity Consumers." In Marketing Renewable Energy, 91–108. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46427-5_5.
Full textAurifeille, Jacques-Marie, and Pascale G. Quester. "A Conjoint Clusterwise Regression Analysis of Business Ethical Tolerance." In New Meanings for Marketing in a New Millennium, 131. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11927-4_38.
Full textConference papers on the topic "Conjoint analysis (Marketing)"
Prasetyo, Yogi Tri, Krisna Chandra Susanto, Sheree Mae A. Asiddao, Omar Paolo Benito, Jui-Hao Liao, Michael Nayat Young, Satria Fadil Persada, and Reny Nadlifatin. "Determining Marketing Strategy for Coffee Shops with Conjoint Analysis." In 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2023. http://dx.doi.org/10.1109/ieem58616.2023.10406308.
Full textRen, Yi, and Panos Y. Papalambros. "On the Use of Active Learning in Engineering Design." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70624.
Full textRen, Yi, and Panos Y. Papalambros. "Enhanced Adaptive Choice-Based Conjoint Analysis Incorporating Engineering Knowledge." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34790.
Full textRazu, Swithin S., and Shun Takai. "An Approach to Modeling Customer Preference Uncertainty by Applying Bootstrap to Choice-Based Conjoint Analysis Data." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28231.
Full textShafranskaya, Irina N. "APPLICATION OF CONJOINT-ANALYSIS FOR THE ESTIMATION OF MULTI-ATTRIBUTIVE PRODUCT’S UTILITY." In Bridging Asia and the World: Globalization of Marketing & Management Theory and Practice. Global Alliance of Marketing & Management Associations, 2014. http://dx.doi.org/10.15444/gmc2014.05.10.10.
Full textAmarchinta, Hemanth K., and Ramana V. Grandhi. "Combining Marketing and Engineering Tools for Multi-Attribute Optimization." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34556.
Full textAprilianty, Fitri, and Mustika Sufiati Purwanegara. "USING NEURAL RESPONSE (EEG) AND CONJOINT ANALYSIS TO UNDERSTAND THE EFFECT OF UNDERWEAR’S PRODUCT CUES ON CONSUMER CHOICE." In Bridging Asia and the World: Globalization of Marketing & Management Theory and Practice. Global Alliance of Marketing & Management Associations, 2014. http://dx.doi.org/10.15444/gmc2014.08.05.01.
Full text