To see the other types of publications on this topic, follow the link: Conophytum.

Journal articles on the topic 'Conophytum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 29 journal articles for your research on the topic 'Conophytum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hammer, Steven A. "Conophytum confessíonal:." Cactus and Succulent Journal 81, no. 4 (July 2009): 191–95. http://dx.doi.org/10.2985/015.081.0403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powell, Robyn F., Laura Pulido Suarez, Anthony R. Magee, James S. Boatwright, Maxim V. Kapralov, and Andrew J. Young. "Genome size variation and endopolyploidy in the diverse succulent plant family Aizoaceae." Botanical Journal of the Linnean Society 194, no. 1 (June 18, 2020): 47–68. http://dx.doi.org/10.1093/botlinnean/boaa034.

Full text
Abstract:
Abstract Aizoaceae are one of the most diverse succulent plant families in the world, with c. 2 400 species, and they are a major component of the Greater Cape Floristic Region of South Africa. Despite this diversity, genome size (GS) has only been recorded in three of the c. 144 genera of Aizoaceae. This study provides the first comprehensive assessment of GS in the family with 109 genera measured (76% of genera). GS (2C) is conserved in Aizoaceae, varying from 0.54 to 6.34 pg (0.53–6.20 Gbp), with a mean of 2.6 pg. No significant differences between GS and the ecological and environmental traits tested were recovered. Infrageneric GS was explored in the most diverse stoneplant genus, Conophytum, and was found to be extremely conserved [0.98–2.24 pg (1C)]. Furthermore, the extent of endoreduplication in Conophytum was determined across 46 species. Leaf and flower tissues of Conophytum are highly polysomatic and ploidy states of 2C–64C were typically observed across the genus, with some instances of 128C. The relatively conserved and small GS measured across Aizoaceae and in Conophytum is possibly linked to the recent and rapid radiation of the family.
APA, Harvard, Vancouver, ISO, and other styles
3

Young, Andrew J., Chris Rodgerson, Steven A. Hammer, and Matthew R. Opel. "Conophytum bachelorum and its relatives: the introduction of a new conophytum from Namaqualand, C. confusum." Bradleya 33, no. 33 (October 20, 2015): 41–49. http://dx.doi.org/10.25223/brad.n33.2015.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hammer, Steven A. "Conophytum: an annotated checklist (A-C)." Bradleya 6, no. 6 (December 1988): 101–20. http://dx.doi.org/10.25223/brad.n6.1988.a6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hammer, Steven A. "Conophytum: an annotated checklist (D-K)." Bradleya 7, no. 7 (December 1989): 41–62. http://dx.doi.org/10.25223/brad.n7.1989.a3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hammer, Steven A. "Conophytum: an annotated checklist (L-R)." Bradleya 8, no. 8 (December 1990): 53–84. http://dx.doi.org/10.25223/brad.n8.1990.a6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hammer, Steven A. "Conophytum: an annotated checklist (S-Z)." Bradleya 9, no. 9 (December 1991): 105–15. http://dx.doi.org/10.25223/brad.n9.1991.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Young, Andrew J., and Chris Rodgerson. "A new pubescent variety of Conophytum from the southern Richtersveld: Conophytum flavum subsp. novicium var. kosiesense." Bradleya 35, no. 35 (August 31, 2017): 159–65. http://dx.doi.org/10.25223/brad.n35.2017.a15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jacobs, Tom. "A key to the genus Conophytum N.E.Br." Bradleya 25, no. 25 (December 2007): 21–32. http://dx.doi.org/10.25223/brad.n25.2007.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, Andrew J., Chris Rodgerson, Adam D. Harrower, and Steven A. Hammer. "Conophytum crateriforme - a new dumpling from Namaqualand." Bradleya 33, no. 33 (October 20, 2015): 52–57. http://dx.doi.org/10.25223/brad.n33.2015.a9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

OPEL, MATTHEW R. "LEAF ANATOMY OF CONOPHYTUM N. E. BR. (AIZOACEAE)." Haseltonia 11 (December 2005): 27–52. http://dx.doi.org/10.2985/1070-0048(2005)11[27:laocne]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Powell, R. F., A. R. Magee, F. Forest, R. Cowan, and J. S. Boatwright. "Speciation and population genetics of button plants ( Conophytum, Aizoaceae)." South African Journal of Botany 103 (March 2016): 344. http://dx.doi.org/10.1016/j.sajb.2016.02.154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Young, Andrew J., Chris Rodgerson, and Steven A. Hammer. "The rough and the smooth: a reassessment of Conophytum reconditum." Bradleya 29, no. 29 (December 31, 2011): 93–102. http://dx.doi.org/10.25223/brad.n29.2011.a11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Liede, Sigrid, Steven Hammer, and Vin Whitehead. "Observations on pollination and hybridization in the genus Conophytum (Mesembryanthemaceae)." Bradleya 9, no. 9 (December 1991): 93–99. http://dx.doi.org/10.25223/brad.n9.1991.a3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Powell, R. F., C. Klak, J. S. Boatwright, and A. R. Magee. "Generic circumscriptions and relationships in the Conophytum -clade (Ruschieae; Aizoaceae)." South African Journal of Botany 98 (May 2015): 197–98. http://dx.doi.org/10.1016/j.sajb.2015.03.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

OPEL, MATTHEW R. "A MORPHOLOGICAL PHYLOGENY OF THE GENUS CONOPHYTUM N. E. BR. (AIZOACEAE)." Haseltonia 11 (December 2005): 53–77. http://dx.doi.org/10.2985/1070-0048(2005)11[53:ampotg]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Thiede, Joachim, Matthew R. Opel, and Steven A. Hammer. "Flower Pigment Patterns and Systematics of Conophytum N. E. Br. (Aizoaceae)." Haseltonia 16 (January 2011): 9–15. http://dx.doi.org/10.2985/1070-0048-16.1.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Powell, R. F., J. S. Boatwright, A. J. Young, J. F. Colville, C. Klak, and A. R. Magee. "Hotbeds of diversity in the stone plant genus Conophytum (Ruschioideae, Aizoaceae)." South African Journal of Botany 109 (March 2017): 364. http://dx.doi.org/10.1016/j.sajb.2017.01.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Desmet, Philip G., Tom L. K. F. Jacobs, and Terry C. Smale. "Conophytum subterraneum, a distinctive new species from the north-eastern Richtersveld, South Africa." Bradleya 19, no. 19 (September 28, 2001): 15–18. http://dx.doi.org/10.25223/brad.n19.2001.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jürgens, A. "Nectar sugar composition and floral scent compounds of diurnal and nocturnal Conophytum species (Aizoaceae)." South African Journal of Botany 70, no. 2 (May 2004): 191–205. http://dx.doi.org/10.1016/s0254-6299(15)30235-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jürgens, Andreas, and Taina Witt. "Pollen-ovule ratios and flower visitors of day-flowering and night-flowering Conophytum (Aizoaceae) species in South Africa." Journal of Arid Environments 109 (October 2014): 44–53. http://dx.doi.org/10.1016/j.jaridenv.2014.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Powell, Robyn F., Anthony R. Magee, Felix Forest, Robyn S. Cowan, and J. Stephen Boatwright. "A phylogeographic study of the stoneplant Conophytum (Aizoaceae; Ruschioideae; Ruschieae) in the Bushmanland Inselberg Region (South Africa) suggests anemochory." Systematics and Biodiversity 17, no. 2 (February 17, 2019): 110–23. http://dx.doi.org/10.1080/14772000.2019.1571535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Powell, Robyn F., James S. Boatwright, Cornelia Klak, and Anthony R. Magee. "Inclusion of Ihlenfeldtia and Odontophorus in Cheiridopsis (Ruschioideae: Aizoaceae) and insights into generic and subgeneric circumscription in the Conophytum clade." Botanical Journal of the Linnean Society 184, no. 4 (July 27, 2017): 457–84. http://dx.doi.org/10.1093/botlinnean/box037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bertrand-Sarfati, J., and A. Moussine-Pouchkine. "Evolution and environmental conditions of Conophyton—jacutophyton associations in the atar dolomite (upper proterozoic, Mauritania)." Precambrian Research 29, no. 1-3 (June 1985): 207–34. http://dx.doi.org/10.1016/0301-9268(85)90069-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Carvalho, Maria Gabriela De, and Carlos José Souza de Alvarenga. "Estratigrafia da transição entre os grupos Bambuí e Paranoá no Distrito Federal." Geologia USP. Série Científica 18, no. 4 (December 20, 2018): 193–208. http://dx.doi.org/10.11606/issn.2316-9095.v18-147795.

Full text
Abstract:
O norte do Distrito Federal (DF) inclui uma expressiva sucessão de rochas carbonáticas de posicionamento estratigráfico divergente, tendo sido incluídos tanto no Grupo Bambuí como no Grupo Paranoá. Neste trabalho, os carbonatos do Grupo Paranoá foram individualizados e separados daqueles da Formação Sete Lagoas do Grupo Bambuí. O primeiro é composto de uma unidade siliciclástica formada predominantemente por intercalações rítmicas de siltitos e arenitos sobreposta por rochas pelito-carbonáticas, com lentes de calcários dolomíticos, onde é possível observar o estromatólito Conophyton metulum Kirichenko. A Formação Sete Lagoas do Grupo Bambuí recobre de forma discordante as rochas do Grupo Paranoá e foi subdividida em duas sucessões estratigráficas distintas. A Sucessão 1 da Formação Sete Lagoas inclui três unidades litoestratigráficas distintas: (i) a unidade basal começa por um dolarenito cinza, sobreposto por uma sucessão rítmica de calcilutitos/calcarenitos arroxeados com argilas não carbonáticas, (ii) na unidade intermediária, predominam calcarenitos puros sucedidos pela (iii) unidade de dolomitos. Uma superfície erosiva marcada por níveis de brecha limita a Sucessão 2, que começa com 1–2 metros de siltitos seguidos por calcarenitos com camadas de argilosas crescentes em direção ao topo. O norte do DF está na zona externa da Faixa Brasília, onde foram identificadas duas fases de deformações, perpendiculares entre si, orientadas com direções grosseiramente NS e EW.
APA, Harvard, Vancouver, ISO, and other styles
26

Marian, Melinda L., and Robert H. Osborne. "Petrology, petrochemistry, and stromatolites of the Middle to Late Proterozoic Beck Spring Dolomite, eastern Mojave Desert, California." Canadian Journal of Earth Sciences 29, no. 12 (December 1, 1992): 2595–609. http://dx.doi.org/10.1139/e92-206.

Full text
Abstract:
The Beck Spring Dolomite is the medial unit of the Middle to Late Proterozoic Pahrump Group, the oldest sequence of sedimentary rocks in eastern California. Stratigraphic sections of the Beck Spring Dolomite examined in the eastern Mojave Desert and Death Valley regions consist of four members. These are, in ascending order, a lower cherty member, a lower laminated member, an oolitic–pisolitic member, and an upper cherty member. More than 80% of the Beck Spring Dolomite is algal-laminated dolomite with a possible Middle to Late Riphean stromatolite assemblage characterized by cf. Conophyton, eroded, irregular columnar forms similar to Kussiella or Baicalia, and several types of stratiform Stratifera. Petrographic, X-ray diffraction, and atomic absorption spectroscopic analyses indicate that the formation is composed of well-ordered replacement dolomite with less than 25% acid-insoluble residue. Concentrations of Fe and Mn are two to six times higher in the algal-laminated members than in the oolitic–pisolitic member, whereas the concentrations of Ca, Mg, Ba, Sr, Na, and K show no systematic variations. Stratigraphic relationships, primary and secondary sedimentary structures, petrology, and stromatolite assemblages suggest deposition during Middle to Late Proterozoic time on a platform that most likely included offshore shoals, restricted lagoons, and broad tidal flats with ponds, channels, and levees.
APA, Harvard, Vancouver, ISO, and other styles
27

Rizzo, Vincenzo. "Why should geological criteria used on Earth not be valid also for Mars? Evidence of possible microbialites and algae in extinct Martian lakes." International Journal of Astrobiology 19, no. 3 (March 2, 2020): 283–94. http://dx.doi.org/10.1017/s1473550420000026.

Full text
Abstract:
AbstractDuring the Noachian period, 4.1-3.7 Gys ago, the Martian environment was moderately similar to the one on present Earth. Liquid water was widespread in a neutral environment, volcanic activity and heat flow more vigorous, and atmospheric pressure and temperature were higher than today. These conditions may have favoured the spread of life on the surface of Mars. The recognition that different planets and moons share rocky material cast in space by meteoroid impact entails that life creation is not necessary for each single planetary body, but could travel through the Solar system on board of rock fragments. Studies conducted on the past forms of Martian life have already highlighted possible positive matches with microbialite-like structures, referable to the geo-environmental conditions in the Noachian and Hesperian. However, by necessity, these studies are on predominantly micro and meso-scopic scale structures and doubts arise as to their attribution to the biogenic world. We suggest that in the identification of Martian life, we are currently in a position similar to the one of Kalkowsky who in 1908, based solely on morphological and sedimentological arguments, hypothesized the (now accepted) view of the biotic origin of stromatolites. Our analysis of thousands of images from Spirit, Opportunity and Curiosity has provided a selection of images of ring-shaped, domal and coniform macrostructures that resemble terrestrial microbialites such as the ring-shaped stromatolites of Lake Thetis, and stacked cones reminiscent of the group of terrestrial Conophyton. Notably, the latter were detected by Curiosity in the mudstone known as ‘Sheepbed’, the same outcrop where past organic molecules have been detected and where the occurrence of microbial-induced sedimentary structures (MISS) and of many more microbialitic micro, meso and macrostructures has already been hypothesized. Some of the structures discussed in this work are so complex that alternative biological hypotheses can be formulated as possible algae. Alternate, non-abiotic explanations are examined but we find difficult to explain some of such structures in the context of normal sedimentary processes, both syngenetic or epigenetic.
APA, Harvard, Vancouver, ISO, and other styles
28

Young, Andrew J., and Philip G. Desmet. "The distribution of the dwarf succulent genus Conophytum N.E.Br. (Aizoaceae) in southern Africa." Bothalia 46, no. 1 (May 30, 2016). http://dx.doi.org/10.4102/abc.v46i1.2019.

Full text
Abstract:
Background: The dwarf succulent genus Conophytum N.E.Br. is one of the most species rich in the Aizoceae. The genus is most closely associated with a region of high floral endemism and biodiversity, the Succulent Karoo biome in south-western Africa.Objectives: To examine the distribution of Conophytum in south-western Namibia and in the Northern and Western Cape Provinces of South Africa.Method: A database comprising 2798 locality records representing all known species and subspecies of the genus Conophytum has been constructed.Results: The genus is primarily restricted to the arid winter-rainfall region of the Northern and Western Cape Provinces of South Africa and south-western Namibia, within the Greater Cape Floristic Region. Whilst taxa are found across all the main biomes in the region (the Succulent Karoo, Nama Karoo, Desert and Fynbos biomes), 94% of Conophytum taxa are found only in the Succulent Karoo biome and predominantly (88% of taxa) within South Africa. Endemism within specific bioregions is a feature of the genus and ~60% of taxa are endemic to the Succulent Karoo. Approximately 28% of all taxa could be considered point endemics. Whilst the genus has a relatively wide geographical range, we identify a pronounced centre of endemism in the southern Richtersveld.Conclusion: The genus Conophytum can be used as a good botanical model for studying patterns of diversity and speciation in the Succulent Karoo biome, the effects of climate change on dwarf succulents, and for informing conservation planning efforts.
APA, Harvard, Vancouver, ISO, and other styles
29

Fraga, Lucio Mauro Soares, Soraya de Carvalho Neves, Gabriela Luiza Pereira Pires, Adriano Luiz Tibães, and Alexandre Uhlein. "ESTROMATÓLITOS COLUNARES NA BASE DO GRUPO MACAÚBAS, NORDESTE DA SERRA DO ESPINHAÇO (MG): PALEONTOLOGIA E AMBIENTE DE SEDIMENTAÇÃO." Geonomos, July 31, 2013. http://dx.doi.org/10.18285/geonomos.v21i1.254.

Full text
Abstract:
Na região nordeste da Serra do Espinhaço Meridional são encontrados metassedimentos da base do Grupo Macaúbas,constituídos por quartzitos, camadas de metapelitos e rochas metacarbonáticas, depositadas em diferentes ambientes de sedimentação:continental, transicional e marinho. Na Formação Domingas ocorrem camadas de metapelitos contendo lentes isoladas de dolomitos comum rico conteúdo paleontológico formado por estruturas estromatolíticas colunares. Em trabalhos de campo recentes foram encontradas edescritas duas lentes de dolomitos na região de Inhaí (região da Fazenda Boqueirão) e uma lente já conhecida, localizada na calha do RioJequitinhonha. Nestas regiões foram descritas a morfologia e a geometria das estruturas biogênicas, além da petrografia das rochascarbonáticas e das rochas metapelíticas associadas. Este estudo concentra-se na descrição dos morfotipos de estromatólitos, classificadosde acordo com sua macro e mesoestrutura, conforme o grau de herança laminar e o tipo de ramificações encontradas. Desta forma, foramidentificados dois morfotipos distintos de estromatólitos onde, as formas cônicas sem ramificações, apresentaram alto grau de herançalaminar, sendo então classificados como Conophyton garganicum. As formas ramificadas, geralmente com dicotomas paralelos e decrescimento muito convexo, foram classificadas como Jacutophyton. A geometria dos corpos dolomíticos, o conteúdo paleontológico e suaposição estratigráfica associada a sedimentação pelítica, sugerem que estas rochas foram formadas a partir de precipitações bioquímicasem águas pouco profundas (submaré rasa) dentro de um ambiente costeiro.Palavras Chaves: Estromatólito; Grupo Macaúbas; Proterozóico; Conophyton; Jacutophyton. ABSTRACTCOLUMNAR STROMATOLITES AT THE BASE OF MACAÚBAS GROUP, NORTHEST OF ESPINHAÇO RIDGE (MG): PALEONTOLOGYAND SEDIMENTARY ENVIRONMENT- The rocks at the base of the Macaúbas Group that outcrop in the northeastern of Espinhaço Ridge areconstituted mainly by quartzites followed by layers of metapelites and metacarbonates rocks, deposited in fluvial, marine and coastalenvironments, of Neoproterozoic age. At the top of metapelites layers of the Domingas Formation, occur isolated lens of dolomitescontaining a rich paleontological content composed of columnar estromatolitics structures. After recently field trips where they wereidentified news lenses of dolomites in the Boqueirão Farm (Inhaí/Diamantina region) and the lens already know, in the Jequitinhonha river,trough was described the morphology and geometry of biogenic structures found, besides the petrography of carbonates and metapeliticrocks associated. In this study the stromatolites were classified by the macro and mesostructures, depending on the degree of laminar andheritage branch type found. In this way, were described two distinct morphotypes of stromatolites where conical shapes without branches,showed a high degree of laminar heritage, being so classed as Conophyton garganicum. The branched shapes, usually with paralleldicotomas and convex growth were classified as Jacutophyton. The geometry of the dolomitic bodies, the paleontological content andstratigraphic position association of pelitic sedimentation, suggest that these rocks were formed from biochemical precipitation in waterssufficiently deep (subtidal shallow) within a coastal environment.Keywords: Stromatolites; Macaúbas Group; Proterozoic; Conophyton; Jacutophyton.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography