Academic literature on the topic 'Contact imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Contact imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Contact imaging"
Smith, D. P. E., G. Binnig, and C. F. Quate. "Atomic point‐contact imaging." Applied Physics Letters 49, no. 18 (November 3, 1986): 1166–68. http://dx.doi.org/10.1063/1.97403.
Full textSokolov, I. Yu, G. S. Henderson, and F. J. Wicks. "Pseudo-non-contact AFM imaging?" Applied Surface Science 140, no. 3-4 (February 1999): 362–65. http://dx.doi.org/10.1016/s0169-4332(98)00555-8.
Full textJi, Honghao, David Sander, Alfred Haas, and Pamela A. Abshire. "Contact Imaging: Simulation and Experiment." IEEE Transactions on Circuits and Systems I: Regular Papers 54, no. 8 (August 2007): 1698–710. http://dx.doi.org/10.1109/tcsi.2007.902409.
Full textMorita, Seizo, Satoru Fujisawa, Eigo Kishi, Masahiro Ohta, Hitoshi Ueyama, and Yasuhiro Sugawara. "Contact and non-contact mode imaging by atomic force microscopy." Thin Solid Films 273, no. 1-2 (February 1996): 138–42. http://dx.doi.org/10.1016/0040-6090(95)06806-6.
Full textDieterich, James H., and Brian D. Kilgore. "Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic." Tectonophysics 256, no. 1-4 (May 1996): 219–39. http://dx.doi.org/10.1016/0040-1951(95)00165-4.
Full textHosseinaee, Zohreh, Martin Le, Kevan Bell, and Parsin Haji Reza. "Towards non-contact photoacoustic imaging [review]." Photoacoustics 20 (December 2020): 100207. http://dx.doi.org/10.1016/j.pacs.2020.100207.
Full textFeder, R., and V. Mayne-Banton. "X-Ray Contact Imaging: the Technique." Proceedings, annual meeting, Electron Microscopy Society of America 43 (August 1985): 596–99. http://dx.doi.org/10.1017/s0424820100119764.
Full textMorris, Jonathan C. "Imaging microstructural contact damage in silicon." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 1144–45. http://dx.doi.org/10.1017/s0424820100151556.
Full textPanthi, Shyam, and Jason J. Nichols. "Imaging Approaches for Contact Lens Deposition." Eye & Contact Lens: Science & Clinical Practice 43, no. 4 (July 2017): 205–12. http://dx.doi.org/10.1097/icl.0000000000000302.
Full textAmran, Azura, Nor Kamilah Saat, Nizam Tamchek, and Lee Mon Ting. "Photothermal Imaging using Non-Contact Photopyroelectric Method." Sains Malaysiana 49, no. 5 (May 31, 2020): 1129–36. http://dx.doi.org/10.17576/jsm-2020-4905-18.
Full textDissertations / Theses on the topic "Contact imaging"
Daivasagaya, Daisy. "CMOS contact and phase imaging of biochemical sensor microarray." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117067.
Full textDans cette thèse, nous présentons deux systèmes pour détecter l'oxygène gazeux (O2). Tout d'abord, nous décrivons un microsystème compact à senseur luminescent qui est basée sur l'intégration directe d'éléments de senseur avec un filtre optique polymère qui est placé sur un imageur circuits intégrés (CI) à faible énergie de type Complementary metal oxide semi-conductor (CMOS). Le second système est un système portatif qui permet de détecter la différence de phase fluorométrique. Ce système est basé sur un circuit intégré à puce unique qui permet de générer des signaux sinusoïdal en utilisant la synthèse directe de signaux digitaux et l'extraction de l'angle de phase du signal luminescent, provenant des films du senseur, en utilisant des transformées de Fourier discrète sur ce signal. Pour la détection du dioxygène, les senseurs mesure l'intensité d'émission des luminophores tris (4,7-diphényl-1, 10 - phénanthroline) ruthénium (II) ([Ru(dpp)3]2+) à l'état excité encapsulés dans des sol-gel provenant de micro film xérogel. Le microsystème compact à senseur luminescent comprend un filtre optique polymère à base de polydiméthylsiloxane (PDMS), qui est mélangée avec le colorant Soudan-II. La surface du filtre PDMS est moulée pour ainsi incorporer les réseaux de microstructures pyramidales qui servent à concentrer les signaux des senseurs optiques sur les photodétecteurs. Les réseaux de senseur à base de xérogel sont imprimés par contact sur le dessus des microstructures PDMS pyramidales qui agissant comme des lentilles. L'imageur CMOS utilise une matrice de 32x32 (1024 éléments) servant de pixels actifs et chaque un de ces pixels comporte un phototransistor à gain élevé pour convertir les signaux détectés optiques en courants électriques. La corrélation de circuit d'échantillonnage double, l'adresse de pixel, et les circuits de commande numérique d'intégration de signaux sont également résolue par la puce. Les données sont lues par l'imageur en tant que signaux codé en série. Les capteurs CMOS fournissent une plateforme utile pour le développement des systèmes miniaturisés pour l'analyse fiable et précis des composantes chimiques gazeuse et aqueuse par des moyens optiques.
Ji, Honghao. "Integrated CMOS optical sensors for fluorescence detection and contact imaging." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3890.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Simon, Kim. "Otherwise than seeing, negotiating distance and contact for an ethical imaging." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ28661.pdf.
Full textGan, Tat Hean. "New approaches to ultrasonic imaging using air-coupled and contact techniques." Thesis, University of Warwick, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273503.
Full textGalan, Cherrez Andres Moroni. "Design and Evaluation of a CMOS Contact-Imaging System for Microfluidics." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7219.
Full textWeisenfeld, Neil Ira 1969. "A non-contact, active stereo imaging system for intraoperative surface measurements." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87276.
Full textPetrack, Alec M. "Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596066982589817.
Full textAl-Khalidi, Farah Qais. "Development and evaluation of thermal imaging techniques for non-contact respiration monitoring." Thesis, Sheffield Hallam University, 2011. http://shura.shu.ac.uk/20616/.
Full textWu, Wan-Chen (Wan-Chen Shane) 1974. "Tactile sensing of shape : biomechanics of contact investigated using imaging and modeling." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35623.
Full textIncludes bibliographical references (leaves 123-131).
The overall goal of this research effort is to improve the understanding of the biomechanics of skin as it pertains to human tactile sense. During touch, mechanoreceptors beneath the skin surface are mechanically loaded due to physical contact of the skin with an object and respond with a series of neural impulses. This neural population response is decoded by the central nervous system to result in tactile perception of properties such as the shape, surface texture and softness of the object. The particular approach taken in this research is to develop a realistic model of the human fingertip based on empirical measurements of in vivo geometric and material properties of skin layers, so that the mechanical response of the fingertip skin to different shapes of objects in contact can be investigated, to help identify the relevant mechanism that triggers the mechanoreceptors in tactile encoding of object shape. To obtain geometric data on the ridged skin surface and the layers underneath together with their deformation patterns, optical coherence tomography (OCT) was used to image human fingertips in vivo, free of load as well as when loaded with rigid indenters of different shapes.
(cont.) The images of undeformed and deformed finger pads were obtained, processed, and used for biomechanically validating the fingertip model. To obtain material properties of skin layers, axial strain imaging using high frequency ultrasound backscatter microscopy (UBM) was utilized in experiments on human fingertips in vivo to estimate the ratio of stiffnesses of the epidermis and dermis. By utilizing the data from OCT and UBM experiments, a multilayered three dimensional finite element model of the human fingertip composed of the ridged fingerpad skin surface as well as the papillary interface between the epidermis and dermis was developed. The model was used to simulate static indentation of the fingertip by rigid objects of different shapes and to compute stress and strain measures, such as strain energy density (SED), and maximum compressive or tensile strain (MCS, MTS), which have been previously proposed as the relevant stimuli that trigger mechanoreceptor response.
(cont.) The results showed that the intricate geometry of skin layers and inhomogeneous material properties around the locations of the SA-I and RA mechanoreceptors caused significant differences in the spatial distribution of candidate relevant stimuli, compared with other locations at the same depths or the predictions from previous homogeneous models of the fingertip. The distribution of the SED at the locations of SA-I mechanoreceptors and the distribution of MCS/MTS at the locations of RA mechanoreceptors under indentation of different object shapes were obtained to serve as predictions to be tested in future biomechanical and neurophysiological experiments.
by Wan-Chen Wu.
Ph.D.
Hall, Lee. "Use of imaging technology to better understand soft contact lens fit dynamics." Thesis, Aston University, 2014. http://publications.aston.ac.uk/24468/.
Full textBooks on the topic "Contact imaging"
Strömberg, Niklas. Imaging optodes. Göteborg: Dept. of Chemistry, Analytical Chemistry, Göteborg University, 2006.
Find full textDeFigueiredo, Rui J. P. A contribution to laser range imaging technology: NASA contract final report. [Houston, Tex.?]: Research Institute for Computing and Information Systems, University of Houston-Clear Lake, 1991.
Find full textAssociation, American Pharmacists, ed. Diagnostic imaging for pharmacists. Washington, DC: American Pharmacists Association, 2011.
Find full textHoff, Lars. Acoustic characterization of contrast agents for medical ultrasound imaging. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textKanal, Emanuel. Safety manual on magnetic resonance imaging contrast agents. Cedar Knolls, N.J: Lippincott-Raven Healthcare, 1995.
Find full textSlater, P. Semi-annual EOS contract report: Report #66 : period: January 1 - June 30, 1997; contract number: NAS5-31717. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textHernandez, John B. Evaluating a multi-hospital quality improvement strategy to implement clinical guidelines for radiographic contrast agents. Santa Monica, CA: Rand, 1998.
Find full textHernandez, John B. Evaluating a multi-hospital quality improvement strategy to implement clinical guidelines for radiographic contrast agents. Santa Monica, CA: Rand, 1998.
Find full textHernandez, John B. Evaluating a multi-hospital quality improvement strategy to implement clinical guidelines for radiographic contrast agents. Santa Monica, CA: Rand, 1998.
Find full textBook chapters on the topic "Contact imaging"
Payne, Steve. "Contact Lithotripters." In Imaging and Technology in Urology, 205–8. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2422-1_46.
Full textCretin, Bernard, and Daniel Hauden. "Transmission Thermoacoustic Imaging Without Contact." In Acoustical Imaging, 653–55. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2523-9_65.
Full textPei, J., M. I. Yousuf, F. L. Degertekin, B. V. Honein, and B. T. Khuri-Yakub. "Plate Tomography with Dry Contact Lamb Wave Transducers." In Acoustical Imaging, 725–30. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_118.
Full textNamboodiri, Narayanan, Anthony G. Brooks, and Prashanthan Sanders. "Contact and Noncontact Electroanatomical Mapping." In Cardiac Imaging in Electrophysiology, 161–79. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84882-486-7_11.
Full textLee, Hee Hyun, John Rogers, and Graciela Blanchet. "Thermal Imaging and Micro-contact Printing." In Organic Electronics, 233–70. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608753.ch10.
Full textJones, J. P., D. Lee, M. Bhardwaj, V. Vanderkam, and B. Achauer. "Non-Contact Ultrasonic Imaging for the Evaluation of Burn-Depth and other Biomedical Applications." In Acoustical Imaging, 89–93. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8588-0_14.
Full textTan, K. H., P. C. Cheng, and D. M. Shinozaki. "Soft X-ray Contact Imaging at CSRF." In X-ray Microscopy, 185–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72881-5_12.
Full textEgan, Gillian, Elizabeth Keavey, and Niall Phelan. "Comparison of Contact Spot Imaging on a Scanning Mammography System to Conventional Geometric Magnification Imaging." In Breast Imaging, 165–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31271-7_22.
Full textCheng, P. C., D. M. Shinozaki, and K. H. Tan. "Recent Advances in Contact Imaging of Biological Materials." In X-ray Microscopy, 65–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72881-5_6.
Full textLorente, Nicolas, and Mads Brandbyge. "Theory of Elastic and Inelastic Transport from Tunneling to Contact." In Scanning Probe Microscopies Beyond Imaging, 469–507. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608516.ch15.
Full textConference papers on the topic "Contact imaging"
Zhao, Haiyu, and Christopher D. Rahn. "Repetitive Contact Imaging." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35586.
Full textSitnik, Robert, Jerzy Sładek, Magdalena Kupiec, Paweł Błaszczyk, and Wojciech Załuski. "Hybrid, contact, and no contact measurement system for industry." In Electronic Imaging 2008, edited by Brian D. Corner, Masaaki Mochimaru, and Robert Sitnik. SPIE, 2008. http://dx.doi.org/10.1117/12.765910.
Full textBrahmbhatt, Samarth, Cusuh Ham, Charles C. Kemp, and James Hays. "ContactDB: Analyzing and Predicting Grasp Contact via Thermal Imaging." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00891.
Full textWhite, L. K. "Contact Hole Imaging In Stepper Lithography." In Microlithography Conference, edited by Harry L. Stover. SPIE, 1987. http://dx.doi.org/10.1117/12.967056.
Full textWang, Xiong, Yexian Qin, Russell S. Witte, and Hao Xin. "Modeling of non-contact thermoacoustic imaging." In 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2015. http://dx.doi.org/10.1109/usnc-ursi.2015.7303598.
Full textKoch, Martin, Alexander Brost, Atilla Kiraly, Norbert Strobel, and Joachim Hornegger. "Post-procedural evaluation of catheter contact force characteristics." In SPIE Medical Imaging, edited by Bram van Ginneken and Carol L. Novak. SPIE, 2012. http://dx.doi.org/10.1117/12.912315.
Full textChoi, Hyun Young, Woojin Ahn, and Doo Yong Lee. "Multi-contact model for FEM-based surgical simulation." In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.844153.
Full textJohnsen, S. F., Z. A. Taylor, M. Clarkson, S. Thompson, M. Hu, K. Gurusamy, B. Davidson, D. J. Hawkes, and S. Ourselin. "Explicit contact modeling for surgical computer guidance and simulation." In SPIE Medical Imaging, edited by David R. Holmes III and Kenneth H. Wong. SPIE, 2012. http://dx.doi.org/10.1117/12.911787.
Full textFitzpatrick, Aidan, Ajay Singhvi, and Amin Arbabian. "Spatial Reconstruction of Soil Moisture Content using Non-Contact Thermoacoustic Imaging." In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278654.
Full textNakayama, Chieko. "Non-contact water content measurement of soil based on thermal imaging." In 2008 International Conference on Control, Automation and Systems (ICCAS). IEEE, 2008. http://dx.doi.org/10.1109/iccas.2008.4694229.
Full textReports on the topic "Contact imaging"
Abshire, Pamela, Elisabeth Smela, and Benjamin Shapiro. On-Chip Hardware for Cell Monitoring: Contact Imaging and Notch Filtering. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada435748.
Full textForsberg, Flemming. Multi-Pulse Ultrasound Contract Imaging for Improved Breast Cancer Diagnosis. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada411301.
Full textForsberg, Flemming. Ultrasound Activated Contrast Imaging for Prostate Cancer Detection. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada439248.
Full textForsberg, Flemming. Ultrasound Activated Contrast Imaging for Prostate Cancer Detection. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada472860.
Full textDiebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada488612.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada472126.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada457700.
Full textForsberg, Flemming. Contrast Enhanced 3D Color Amplitude Imaging of the Breasts. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada382383.
Full textPalmer, Matthew R. Bisphosphonate-Based Contrast Agents for Radiological Imaging of Microcalcifications. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada431695.
Full textPalmer, Matthew R. Bisphosphonate-Based Contrast Agents for Radiological Imaging of Microcalcifications. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada468525.
Full text