Academic literature on the topic 'Content-Based Image Retrieval (CBIR)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Content-Based Image Retrieval (CBIR).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Content-Based Image Retrieval (CBIR)"
Varma, Ankitha, and Dr Kamalpreet Kaur. "Survey on content based image retrieval." International Journal of Engineering & Technology 7, no. 4.5 (September 22, 2018): 471. http://dx.doi.org/10.14419/ijet.v7i4.5.21136.
Full textMORE, MAHADEV A. "CONTENT BASED IMAGE RETRIVAL USING DIFFERENT CLUSTERING TECHNIQUES." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, no. 09 (September 1, 2023): 1–11. http://dx.doi.org/10.55041/ijsrem25835.
Full textPremkumar, M., and R. Sowmya. "Interactive Content Based Image Retrieval using Multiuser Feedback." JOIV : International Journal on Informatics Visualization 1, no. 4 (December 1, 2017): 165. http://dx.doi.org/10.30630/joiv.1.4.57.
Full textMalik, C. K. Mohammed. "Content based Image Retrieval Using Clustering Method." International Academic Journal of Science and Engineering 6, no. 2 (September 26, 2022): 06–12. http://dx.doi.org/10.9756/iajse/v6i2/1910020.
Full textBelattar, Khadidja, Sihem Mostefai, and Amer Draa. "Intelligent Content-Based Dermoscopic Image Retrieval with Relevance Feedback for Computer-Aided Melanoma Diagnosis." Journal of Information Technology Research 10, no. 1 (January 2017): 85–108. http://dx.doi.org/10.4018/jitr.2017010106.
Full textKumar, Suneel, Manoj Kumar Singh, and Manoj Kumar Mishra. "Improve Content-based Image Retrieval using Deep learning model." Journal of Physics: Conference Series 2327, no. 1 (August 1, 2022): 012028. http://dx.doi.org/10.1088/1742-6596/2327/1/012028.
Full textSrinivasa Reddy, K., R. Anandan, K. Kalaivani, and P. Swaminathan. "A comprehensive survey on content based image retrieval system and its application in medical domain." International Journal of Engineering & Technology 7, no. 2.31 (May 29, 2018): 181. http://dx.doi.org/10.14419/ijet.v7i2.31.13436.
Full textFatima, Shaheen. "Explicit Study on Design and Development of Content-based Image Retrieval in Medical Imaging." Journal of Advanced Research in Electronics Engineering and Technology 08, no. 1&2 (August 23, 2021): 1–5. http://dx.doi.org/10.24321/2456.1428.202101.
Full textFatima, Shaheen. "Explicit Study on Design and Development of Content-based Image Retrieval in Medical Imaging." Journal of Advanced Research in Electronics Engineering and Technology 08, no. 1&2 (August 23, 2021): 1–5. http://dx.doi.org/10.24321/2456.1428.202101.
Full textSingh, Vibhav Prakash, Rajeev Srivastava, Yadunath Pathak, Shailendra Tiwari, and Kuldeep Kaur. "Content-based image retrieval based on supervised learning and statistical-based moments." Modern Physics Letters B 33, no. 19 (July 8, 2019): 1950213. http://dx.doi.org/10.1142/s0217984919502130.
Full textDissertations / Theses on the topic "Content-Based Image Retrieval (CBIR)"
Macena, Júnior Elias Borges. "Aplicação de técnicas de content-based image retrieval (CBIR) em imagens radiográficas." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6405.
Full textApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-10-17T17:17:50Z (GMT) No. of bitstreams: 2 Dissertação - Elias Borges Macena Junior - 2016.pdf: 9321304 bytes, checksum: ca477b8a1eeb56b690f41c443b0ca638 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-10-17T17:17:50Z (GMT). No. of bitstreams: 2 Dissertação - Elias Borges Macena Junior - 2016.pdf: 9321304 bytes, checksum: ca477b8a1eeb56b690f41c443b0ca638 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-09-30
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In order to improve the diagnostic process several research centers have focused on the development of information systems applying powerful techniques of computer-aided diagnosis (CAD). In this context, the creation of content-based image retrieval (CBIR) is an important step in developing an efficient CAD system. This work proposes the validation of recovery with a hybrid CBIR method based on 2D medical images. The results of the techniques applied, indicate a hit rate of 90.25% and indicate a gain of 35% in the performance of techniques, that is, the time search and retrieval of images, paving the way for the development of information systems more efficient to build support generic diagnostic systems.
Com o objetivo de melhorar o processo de diagnóstico vários centros de pesquisas têm focado no desenvolvimento de sistemas de informação aplicando poderosas técnicas de diagnóstico auxiliado por computador (Computer-Aided Diagnosis-CAD). Neste contexto, a criação de métodos de recuperação de imagens baseado em conteúdo (Content-based image retrieval - CBIR) é um passo importante para desenvolver um sistema CAD eficiente. Este trabalho propõe a validação de técnicas de recuperação com um método híbrido CBIR baseado em imagens médicas 2D. Os resultados das técnicas aplicadas, indicam uma taxa de acerto de 90,25% e ainda indicam um ganho de 35% no desempenho das técnicas, isto é, no tempo de busca e recuperação das imagens, abrindo caminho para o desenvolvimento de sistemas de informação mais eficientes para construção de sistemas de apoio ao diagnóstico genéricos.
Larsson, Jimmy. "Taxonomy Based Image Retrieval : Taxonomy Based Image Retrieval using Data from Multiple Sources." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180574.
Full textMed den mängd bilder som nu finns tillgänglig på Internet, hur kan vi fortfarande hitta det vi letar efter? Denna uppsats försöker avgöra hur mycket bildprecision och bildåterkallning kan öka med hjälp av appliceringen av en ordtaxonomi på traditionell Text-Based Image Search och Content-Based Image Search. Genom att applicera en ordtaxonomi på olika datakällor kan ett starkt ordfilter samt en modul som förlänger ordlistor skapas och testas. Resultaten pekar på att beroende på implementationen så kan antingen precisionen eller återkallningen förbättras. Genom att använda en liknande metod i ett verkligt scenario är det därför möjligt att flytta bilder med hög precision längre fram i resultatlistan och samtidigt behålla hög återkallning, och därmed öka den upplevda relevansen i bildsök.
Voulgaris, Georgios. "Techniques for content-based image characterization in wavelets domain." Thesis, University of South Wales, 2008. https://pure.southwales.ac.uk/en/studentthesis/techniques-for-contentbased-image-characterization-in-wavelets-domain(14c72275-a91e-4ba7-ada8-bdaee55de194).html.
Full textBanda, Juan. "Framework for creating large-scale content-based image retrieval system (CBIR) for solar data analysis." Diss., Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/banda/BandaJ0511.pdf.
Full textGovindarajan, Hariprasath. "Self-Supervised Representation Learning for Content Based Image Retrieval." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166223.
Full textWeng, Zumao. "Distributed knowledge based image contents retrieval and exploration." Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370088.
Full textMakovoz, Gennadiy. "Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications." NSUWorks, 2010. http://nsuworks.nova.edu/gscis_etd/227.
Full textViet, Tran Linh. "Efficient Image Retrieval with Statistical Color Descriptors." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5002.
Full textA search engine based, on the methodes discribed in this thesis, can be found at http://pub.ep.liu.se/cse/db/?. Note that the question mark must be included in the address.
Filardi, Ana Lúcia. "Análise e avaliação de técnicas de interação humano-computador para sistemas de recuperação de imagens por conteúdo baseadas em estudo de caso." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06122007-123935/.
Full textThe content-based image retrieval (CBIR) is a challenging area of the computer science that has been growing in a very fast pace in the last years. CBIR systems employ techniques for extracting features from the images, composing the features vectores, and store them together with the images in data bases management system, allowing indexing and querying. CBIR systems deal with large volumes of images. Therefore, the feature vectors are extracted by automatic methods. These systems allow to query the images by content, processing similarity queries, which inherently demands user interaction. Consequently, CBIR systems must pay attention to the user interface, aiming at providing friendly, intuitive and attractive interaction, leading the user to do the tasks efficiently, getting the desired results, feeling safe and fulfilled. From the points highlighted beforehand, we can state that the human-computer interaction (HCI) is a key element of a CBIR system. However, there is still little research on HCI for CBIR systems. One of the requirements of HCI for CBIR is to provide a high quality interface to allow the user to search for similar images to a given query image, and to display the results properly, allowing further interaction. The present dissertation aims at analyzing the user interaction in CBIR systems specially suited to medical applications, evaluating their usability by applying HCI techniques. To do so, a case study was employed, and the results presented
Henrysson, Jennie, Kristina Johansson, and Charlotte Juhlin. "Vad säger bilden? : En utvärdering av återvinningseffektiviteten i ImBrowse." Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18375.
Full textUppsatsnivå: D
Books on the topic "Content-Based Image Retrieval (CBIR)"
Eakins, J. P. Content-based image retrieval. Manchester: JISC Technology Applications Pogramme, 1999.
Find full textTyagi, Vipin. Content-Based Image Retrieval. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6759-4.
Full textEakins, John. Content-based image retrieval. Manchester: Joint Information Systems Committee, 1999.
Find full textMarques, Oge, and Borko Furht. Content-Based Image and Video Retrieval. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0987-5.
Full textMarques, Oge. Content-based image and video retrieval. Boston: Kluwer Academic Publishers, 2002.
Find full textExploratory image databases: Content-based retrieval. San Diego: Academic Press, 2001.
Find full text1953-, Deb Sagarmay, ed. Multimedia systems and content-based image retrieval. Hershey, PA: Idea Group Publishing, 2004.
Find full textKushki, Azadeh. An interactive framework for content-based image retrieval. Ottawa: National Library of Canada, 2003.
Find full text1965-, Ma Zongmin, ed. Artificial intelligence for maximizing content based image retrieval. Hershey PA: Information Science Reference, 2009.
Find full textTong, Zhang, and Kuo C. C. Jay, eds. Content-based audio classification and retrieval for audiovisual data parsing. Boston: Kluwer Academic, 2001.
Find full textBook chapters on the topic "Content-Based Image Retrieval (CBIR)"
Agrawal, Deepti, Apurva Agarwal, and Dilip Kumar Sharma. "Content-Based Image Retrieval (CBIR): A Review." In Lecture Notes in Electrical Engineering, 439–52. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8892-8_33.
Full textPrasanthi, B., P. Suresh, and D. Vasumathi. "Index-Based Image Retrieval-Analyzed Methodologies in CBIR." In Lecture Notes in Networks and Systems, 233–42. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3935-5_24.
Full textChandana, P., P. Srinivas Rao, C. H. Satyanarayana, Y. Srinivas, and A. Gauthami Latha. "An Efficient Content-Based Image Retrieval (CBIR) Using GLCM for Feature Extraction." In Advances in Intelligent Systems and Computing, 21–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3779-5_4.
Full textEstrela, Vania V., Abdullah Ayub Khan, Aftab Ahmed Shaikh, Asif Ali Laghari, Mazhar Ali Dootio, Mudassir Hussain, Awais Khan Jumani, and Rukhsar Ayub. "Some Issues Regarding Content-Based Image Retrieval (CBIR) for Remote Healthcare Theradiagnosis." In Intelligent Healthcare Systems, 110–34. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003196822-7.
Full textHaruechaiyasak, Choochart, and Chaianun Damrongrat. "Improving Social Tag-Based Image Retrieval with CBIR Technique." In The Role of Digital Libraries in a Time of Global Change, 212–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13654-2_26.
Full textRamamurthy, B., K. R. Chandran, V. R. Meenakshi, and V. Shilpa. "CBMIR: Content Based Medical Image Retrieval System Using Texture and Intensity for Dental Images." In Eco-friendly Computing and Communication Systems, 125–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32112-2_16.
Full textZhang, Yu-Jin. "Content-Based Retrieval." In Handbook of Image Engineering, 1513–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5873-3_44.
Full textFurht, Borko, Stephen W. Smoliar, and HongJiang Zhang. "Content-Based Image Retrieval." In Video and Image Processing in Multimedia Systems, 225–70. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2277-5_11.
Full textda Silva Torres, Ricardo, Nádia P. Kozievitch, Uma Murthy, and Alexandre X. Falcão. "Content-Based Image Retrieval." In Digital Library Applications, 1–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-02284-5_1.
Full textWang, Xiaoling, and Kanglin Xie. "Fuzzy Logic-Based Image Retrieval." In Content Computing, 241–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30483-8_29.
Full textConference papers on the topic "Content-Based Image Retrieval (CBIR)"
Khan, Sumaira Muhammad Hayat, Ayyaz Hussain, and Imad Fakhri Taha Alshaikhli. "Comparative Study on Content-Based Image Retrieval (CBIR)." In 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT). IEEE, 2012. http://dx.doi.org/10.1109/acsat.2012.40.
Full textValem, Lucas Pascotti, and Daniel Carlos Guimarães Pedronette. "Unsupervised Selective Rank Fusion on Content-Based Image Retrieval." In XXXII Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sibgrapi.est.2019.8303.
Full textValem, Lucas Pascotti, and Daniel Carlos Guimarães Pedronette. "Unsupervised Selective Rank Fusion for Content-based Image Retrieval." In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2020.11370.
Full textFachrurrozi, Muhammad, Erwin, Saparudin, and Mardiana. "Multi-object face recognition using Content Based Image Retrieval (CBIR)." In 2017 International Conference on Electrical Engineering and Computer Science (ICECOS). IEEE, 2017. http://dx.doi.org/10.1109/icecos.2017.8167132.
Full textSardey, M. P., and M. P. Dale. "Interactive retrieval relevance feedback approach - a tool for content based image retrieval (CBIR)." In National Conference on Signal and Image Processing Applications. IET, 2009. http://dx.doi.org/10.1049/ic.2009.0166.
Full textWankhede, Vrushali A., and Prakash S. Mohod. "Content-based image retrieval from videos using CBIR and ABIR algorithm." In 2015 Global Conference on Communication Technologies (GCCT). IEEE, 2015. http://dx.doi.org/10.1109/gcct.2015.7342767.
Full textDeekshatulu, B. L. "Learning Semantics in Content Based Image Retrieval (CBIR) - A Brief Review." In 2010 Second Vaagdevi International Conference on Information Technology for Real World Problems (VCON). IEEE, 2010. http://dx.doi.org/10.1109/vcon.2010.22.
Full textSasheendran, N., and C. Bhuvaneswari. "An effective CBIR (Content Based Image Retrieval) approach using Ripplet transforms." In 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT). IEEE, 2013. http://dx.doi.org/10.1109/iccpct.2013.6528985.
Full textStefan, Radu Andrei, Ildiko-Angelica Szoke, and Stefan Holban. "Hierarchical clustering techniques and classification applied in Content Based Image Retrieval (CBIR)." In 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2015. http://dx.doi.org/10.1109/saci.2015.7208188.
Full textJadhav, Sunita Manoj, and Vikram Patil. "An effective content Based Image Retrieval (CBIR) system based on evolutionary programming (EP)." In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE, 2012. http://dx.doi.org/10.1109/icaccct.2012.6320793.
Full textReports on the topic "Content-Based Image Retrieval (CBIR)"
Rigotti, Christophe, and Mohand-Saïd Hacid. Representing and Reasoning on Conceptual Queries Over Image Databases. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.89.
Full textRigotti, Christophe, and Mohand-Saïd Hacid. Representing and Reasoning on Conceptual Queries Over Image Databases. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.89.
Full textDecleir, Cyril, Mohand-Saïd Hacid, and Jacques Kouloumdjian. A Database Approach for Modeling and Querying Video Data. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.90.
Full text