Academic literature on the topic 'Continent-continent collision'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Continent-continent collision.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Continent-continent collision"

1

Henyey, T., T. Stern, and P. Molnar. "Continent-continent collision in southern Alps studied." Eos, Transactions American Geophysical Union 74, no. 28 (1993): 316. http://dx.doi.org/10.1029/93eo00454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dymkova, Diana, Taras Gerya, and Jean-Pierre Burg. "2D thermomechanical modelling of continent–arc–continent collision." Gondwana Research 32 (April 2016): 138–50. http://dx.doi.org/10.1016/j.gr.2015.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shuwen, DONG, WU Hongling, LIU Xiaochun, and XUE Huaimin. "On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism." Acta Geologica Sinica - English Edition 76, no. 1 (2010): 69–80. http://dx.doi.org/10.1111/j.1755-6724.2002.tb00072.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Selverstone, Jane, and David S. Gutzler. "Post-125 Ma carbon storage associated with continent-continent collision." Geology 21, no. 10 (1993): 885. http://dx.doi.org/10.1130/0091-7613(1993)021<0885:pmcsaw>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gök, Rengin, Michael E. Pasyanos, and Ekrem Zor. "Lithospheric structure of the continent-continent collision zone: eastern Turkey." Geophysical Journal International 169, no. 3 (2007): 1079–88. http://dx.doi.org/10.1111/j.1365-246x.2006.03288.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, D., C. Juhlin, C. Ayala, et al. "Mountain building processes during continent–continent collision in the Uralides." Earth-Science Reviews 89, no. 3-4 (2008): 177–95. http://dx.doi.org/10.1016/j.earscirev.2008.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brown, Dennis, Piera Spadea, and Ryo Anma. "Processes of arc–continent collision." Tectonophysics 325, no. 1-2 (2000): vii—viii. http://dx.doi.org/10.1016/s0040-1951(00)00127-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeng, Rong-sheng, Qing-ju Wu, Zhi-feng Ding, and Lu-pei Zhu. "India-Eurasian collision vs. ocean-continent collision." Acta Seismologica Sinica 20, no. 1 (2007): 1–10. http://dx.doi.org/10.1007/s11589-007-0001-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Junwen, CUI, SHI Jinsong, LI Pengwu, ZHANG Xiaowei, GUO Xianpu, and DING Xiaozhong. "Numerical Modeling of Basin-Range Tectonics Related to Continent-Continent Collision." Acta Geologica Sinica - English Edition 79, no. 1 (2005): 24–35. http://dx.doi.org/10.1111/j.1755-6724.2005.tb00864.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Uddin, Ashraf, and Neil Lundberg. "Miocene sedimentation and subsidence during continent–continent collision, Bengal basin, Bangladesh." Sedimentary Geology 164, no. 1-2 (2004): 131–46. http://dx.doi.org/10.1016/j.sedgeo.2003.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Continent-continent collision"

1

Reiche, Sönke [Verfasser], and Christian [Akademischer Betreuer] Hübscher. "A seismic reflection study of salt tectonics and incipient continent-continent-collision in the easternmost Mediterranean Sea / Sönke Reiche. Betreuer: Christian Hübscher." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2015. http://d-nb.info/1070624896/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baxter, Kenneth. "Quantitative modelling of continent collision : application to the Timor region, eastern Indonesia." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Jih-Chuan. "Modélisation numérique de l'initiation de la collision arc-continent : application à Taiwan." Nice, 2000. http://www.theses.fr/2000NICE5427.

Full text
Abstract:
La déformation et la rupture de la lithosphère chevauchante lors de la collision arc-continent (subduction continentale) ont été modélisées à partir d'un code d'éléments finis en 2-D. Cette lithosphère possède une rhéologique élasto-plastique et comporte une zone de faiblesse associée à l'arc volcanique. La plaque chevauchante se déforme grâce aux contraintes normales [sigma n] et tangentielles [tau n] appliquées sur la surface inter-plaques. [Sigma n] résulte de la rigidité flexurale de la plaque plongeante et de la flottabilité de la croûte continentale subduite. La modélisation montre que la subduction de la croûte continentale aboutit à une augmentation de la compression et à la rupture dans la plaque chevauchante. La rupture se produit au niveau de l'arc le long d'une faille inclinée sous l'arc de pendage soit vers le continent soit vers l'océan. La direction de rupture est définie par deux facteurs : la rigidité de la plaque plongeante et la géométrie de la croûte subduite. Une rigidité importante favorise la rupture selon une faille à vergence vers le continent qui entraîne l'inversion de subduction, tandis que l'augmentation importante de l'épaisseur de la croûte de la marge favorise la rupture en direction opposée. (. . . ) Nous considérons que (. . . ) l'enfoncement du bloc avant-arc sous l'arc correspond à la collision active arc-continent à Tai͏̈wan. L'analyse statistique de la distribution spatiale de la sismicité au sud de Tai͏̈wan met en évidence une zone peu profonde (0-40 km) de concentration de sismicité sous l'arc de Luzon. Cette zone, interprétée comme la rupture lithosphérique, plonge de l'avant-arc vers l'est et correspond à l'initiation de l'enfoncement du bloc avant-arc sous l'arc de Luzon. Un modèle cohérent mécano-gravimétrique a été avancé pour voir si la rupture de la plaque de la Mer des Philippines (MP) peut être "capturée" par ce modèle. (. . . )
APA, Harvard, Vancouver, ISO, and other styles
4

Chan, Sik-lap Jacky. "Paleocene deep-marine sediments in southern central Tibet indication of an arc-continent collision /." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38925862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Sik-lap Jacky, and 陳式立. "Paleocene deep-marine sediments in southern central Tibet: indication of an arc-continent collision." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38925862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duffy, Brendan Gilbert. "The Structural and Geomorphic Development of Active Collisional Orogens, from Single Earthquake to Million Year Timescales, Timor Leste and New Zealand." Thesis, University of Canterbury. Department of Geological Sciences, 2012. http://hdl.handle.net/10092/7527.

Full text
Abstract:
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
APA, Harvard, Vancouver, ISO, and other styles
7

Boutelier, David. "La modélisation expérimentale tridimensionnelle thermomécanique de la subduction continentale et l'exhumation des roches de ultra haute pression/basse température." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00005197.

Full text
Abstract:
La distribution spatiale des massifs UHP/BT montre que leur exhumation est un phénomène 3D qui a lieu uni-quement dans des zones particulières des chaînes de montagnes caractérisées par une complexité structurale et/ou géométrique. Dans les expériences de modélisation thermomécanique 2D de la subduction continentale en régime de faible compression, nous obtenons l'exhumation de roches HP depuis des profondeurs d'environs 70 km. La croûte continentale subduite plus profondément dans l'asthenosphere devient trop chaude (peu résis-tante). Elle se détache du manteau continental subduit, flue verticalement et se sous plaque sous la plaque chevauchante. La subduction continentale en régime de forte compression peut provoquer la rupture de la plaque chevauchante dans l'arc volcanique ou le bassin arrière arc aboutissant à la subduction du bloc avant arc ou de la plaque d'arc. La croûte continentale subduite avec ces unités peut atteindre 200 km de profondeur en étant gui-dée par ces unités et le manteau continental subduit. Dans ces conditions, la croûte est soumise aux conditions UHP/BT, mais elle ne peut pas être exhumé dans un contexte 2D. Nous montrons numériquement en 3D, que la subduction le long d'une frontière de plaques convexe entraîne localement dans la plaque chevauchante une extension horizontale parallèle à la frontière qui provoque localement le retrait du front de cette plaque et la réduction de la pression inter plaque. En imposant cette déformation extensive à la plaque chevauchante dans un modèle expérimental thermomécanique 3D nous avons obtenus l'exhumation locale des roches UHP/BT et avons pu étudier en détails son mécanisme.
APA, Harvard, Vancouver, ISO, and other styles
8

Major, Jonathan R. "Evolution and Emergence of the Hinterland in the Active Banda Arc-Continent Collision: Insights From the Metamorphic Rocks and Coral Terraces of Kisar, Indonesia." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2946.

Full text
Abstract:
Coral terrace surveys and U-series ages of coral and mollusk shells yield a surface uplift rate of ~0.6 m/ka for Kisar Island. The small island is located NE of Timor in the active Banda Arc of Indonesia. Based on this rate, Kisar first emerged from the ocean as recently as ~450 ka. Terrace surveys show warping that follows a pattern of east-west striking folds, which are along strike of thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar can be attributed to forearc closure along the south-dipping Kisar Thrust. Terrace morphology and coral ages are best explained by recognizing major terraces as mostly growth terraces and minor terraces as mostly erosional into older growth terraces. All reliable and referable coral U-series ages are marine isotope stage (MIS) 5e (118-128 ka), which encrusted the coast up to 60 m elevation. All coral samples are found below 6 m elevation, but a tridacna (giant clam) shell in growth position at 95 m elevation yields an age of 195 +/- 31 ka, which corresponds to MIS Stage 7. Loose deposits of coral fragments found on top of low terraces between 8 and 20 m elevation yield ages of < 100 years and may represent paleotsunami deposits from previously undocumented seismic activity in the region. The metamorphic rocks of Kisar, Indonesia, which correlate with the Aileu Metamorphic Complex of East Timor, record the breakup of a supercontinent with associated rifting, metamorphism from arc-continent collision, and the growth and exhumation of a new orogenic belt. The protoliths of these rocks are mostly psammitic with minor basaltic and felsic igneous rocks. Geochemical analyses of mafic meta-igneous rocks show rift affinities that are likely related to rifting of Gondwana and later breakup in the Jurassic Period. The Aileu Complex is overlain by younger sedimentary rocks deposited on the northern passive margin of Australia, which collided with the Banda Arc in latest Miocene time. This collision caused metamorphism of the distal edge of the continental margin rocks at conditions of 600-700°C at 6-8 kbar and up to 700-850°C at 8-9 kbar locally, corresponding to depths from 25 to 30 km. These rocks were then rapidly uplifted and exhumed. U-Pb analysis of detrital zircons indicates a Permian to Late Jurassic age of the sedimentary sources and confirm an Australian provenance. The timing of metamorphism of the Aileu Complex is poorly constrained by previous studies, of which only a white mica cooling age of 5.36 +/- 0.05 Ma proved reliable. Prior apatite fission track studies show that all tracks are partially to completely annealed suggesting recent rapid cooling. A domal geometry of the island above the sea floor is expressed in the pinnacle shape. Foliations on Kisar Island generally strike parallel to the coastline, which is may be suggestive of doming. The Kisar Thrust, which is imaged in offshore seismic reflection data, may indicate that the doming corresponds to diapirism into the hinge of an active thrust-related anticline or diapirism of buoyant continental material along the thrust itself.
APA, Harvard, Vancouver, ISO, and other styles
9

Roosmawati, Nova. "Long-Term Surface Uplift History of the Active Banda Arc-Continent Collision: Depth and Age Analysis of Foraminifera from Rote and Savu Islands, Indonesia." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd887.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Font, Yvonne. "Contribution to the understanding of the westernmost Ryukyu subduction termination into the active arc-continent collision of Taiwan : new insights from seismic reflection analyses and earthquake relocation /." Montpellier : Institut des sciences de la terre, de l'eau et de l'espace de Montpellier, Université Montpellier II, 2002. http://catalogue.bnf.fr/ark:/12148/cb388580077.

Full text
Abstract:
Th. doct.--Sci. de la terre et de l'eau--Montpellier 2, 2001.<br>Mention parallèle de titre ou de responsabilité : [@Contribution à l'étude de la terminaison ouest de la subduction des Ryukyus au niveau de la collision active arc-continent à Taiwan] : apports de la sismique réflexion et de la relocalisation hypocentrale. Bibliogr. p. 271-279. Résumés en français et en anglais.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Continent-continent collision"

1

D, Ryan Paul, and SpringerLink (Online service), eds. Arc-Continent Collision. Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, Dennis, and Paul D. Ryan. Arc-Continent Collision. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chernozemsky, Vladimir. A continent adrift: A novel. Triumvirate Publications, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryan, Paul D., and Dennis Brown. Arc-Continent Collision. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Byrne, Timothy B., and Char-Shine Liu. Geology and geophysics of an arc-continent collision, Taiwan. Geological Society of America, 2002. http://dx.doi.org/10.1130/spe358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Special Paper 358: Geology and geophysics of an arc-continent collision, Taiwan. Geological Society of America, 2002. http://dx.doi.org/10.1130/0-8137-2358-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

(Editor), Timothy B. Byrne, and Char-Shine Liu (Editor), eds. Geology and Geophysics of an Arc-Continent Collision, Taiwan (Special Paper (Geological Society of America)). Geological Society of America, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Continent-continent collision"

1

Byrne, T., Y. C. Chan, R. J. Rau, C. Y. Lu, Y. H. Lee, and Y. J. Wang. "The Arc–Continent Collision in Taiwan." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, D., R. J. Herrington, and J. Alvarez-Marron. "Processes of Arc–Continent Collision in the Uralides." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, D., P. D. Ryan, J. C. Afonso, et al. "Arc–Continent Collision: The Making of an Orogen." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Okaya, David, Tim Stern, Fred Davey, Stuart Henrys, and Simon Cox. "Continent-continent collision at the Pacific/Indo-Australian Plate Boundary: Background, motivation, and principal results." In A Continental Plate Boundary: Tectonics at South Island, New Zealand. American Geophysical Union, 2007. http://dx.doi.org/10.1029/175gm02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Jason R., and Jonathan C. Aitchison. "Problem of positioning Paleogene Eurasia: A review. Efforts to resolve the issue. Implications for the India-Asia collision." In Continent-Ocean Interactions Within East Asian Marginal Seas. American Geophysical Union, 2004. http://dx.doi.org/10.1029/149gm02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Ho-Shing. "An under-filled foreland basin in the northern South China Sea off southwest Taiwan: Incipient collision and foreland sedimentation." In Continent-Ocean Interactions Within East Asian Marginal Seas. American Geophysical Union, 2004. http://dx.doi.org/10.1029/149gm09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herrington, R. J., and D. Brown. "The Generation and Preservation of Mineral Deposits in Arc–Continent Collision Environments." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harris, R. "The Nature of the Banda Arc–Continent Collision in the Timor Region." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Konstantinovskaya, E. "Early Eocene Arc–Continent Collision in Kamchatka, Russia: Structural Evolution and Geodynamic Model." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ryan, P. D., and J. F. Dewey. "Arc–Continent Collision in the Ordovician of Western Ireland: Stratigraphic, Structural and Metamorphic Evolution." In Frontiers in Earth Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-88558-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Continent-continent collision"

1

Austin, Sarah, and Gautam Mitra. "KINEMATICS OF MID-CRUSTAL ROCKS IN CONTINENT-CONTINENT COLLISION ZONES: KOREAN COLLISION BELT, SOUTH KOREA." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Zhiqin, and Xuxuan Ma. "TECTONIC EVOLUTION OF THE LHASA TERRANE, SOUTH TIBET SINCE MIDDLE TRIASSIC: TRANSITION FROM OCEAN-CONTINENT MULTIPLE SUBDUCTION TO CONTINENT-CONTINENT COLLISION." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-297218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsieh, Yu-Huan, John Suppe, and Char-Shine Liu. "DEFORMATION OF THE OVERRIDING PLATE IN TAIWAN ARC-CONTINENT COLLISION." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-341275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macdonald, Francis A., and Nicholas L. Swanson-Hysell. "TACONIC LOW-LATITUDE ARC-CONTINENT COLLISION AS A DRIVER FOR ORDOVICIAN COOLING." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tate, Garrett W., Nadine McQuarrie, Herwin Tiranda, et al. "SYNCHRONOUS LATE MIOCENE ARC-CONTINENT COLLISION ACROSS TIMOR: FIELD CONSTRAINTS ON PLATE BOUNDARY REORGANIZATION." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carena, Sara, John Suppe, Yih-Min Wu, and Ravi V. S. Kanda. "LITHOSPHERIC-SCALE AND UPPER-CRUSTAL-SCALE GEOMETRY AND KINEMATICS OF THE TAIWAN ARC-CONTINENT COLLISION." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-335653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Midttun, Nikolas C., Nathan A. Niemi, Hektor Babayan, Hayk Igityan, and Mikayel Gevorgyan. "STRIKE-SLIP FAULTING DOMINATES THE RESPONSE OF THE LESSER CAUCASUS TO THE ARABIA-EURASIA CONTINENT COLLISION." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Syuhada, Nugroho D. Hananto, Nanang T. Puspito, Titi Anggono, and Tedi Yudistira. "A study on crustal shear wave splitting in the western part of the Banda arc-continent collision." In THE 4TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (ICTAP) 2014. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4943737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pujols, Edgardo J., Daniel F. Stockli, Aaron J. Cavosie, Yomayra A. Roman, and Hernán Santos. "EOCENE ARC-CONTINENT COLLISION, EXHUMATION, AND DETRITAL ZIRCON GEO- AND THERMOCHRONOMETRIC PROVENANCE RECORD IN WESTERN PUERTO RICO." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-317792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, Larry Syu-Heng, Rebecca J. Dorsey, and Louis Suh-Yui Teng. "THRUST-RELATED GROWTH STRATA IN THE RETROWEDGE OF ARC-CONTINENT COLLISION ZONE, SOUTHERN COASTAL RANGE OF EASTERN TAIWAN." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302234.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Continent-continent collision"

1

Karlstrom, Karl, Laura Crossey, Allyson Matthis, and Carl Bowman. Telling time at Grand Canyon National Park: 2020 update. National Park Service, 2021. http://dx.doi.org/10.36967/nrr-2285173.

Full text
Abstract:
Grand Canyon National Park is all about time and timescales. Time is the currency of our daily life, of history, and of biological evolution. Grand Canyon’s beauty has inspired explorers, artists, and poets. Behind it all, Grand Canyon’s geology and sense of timelessness are among its most prominent and important resources. Grand Canyon has an exceptionally complete and well-exposed rock record of Earth’s history. It is an ideal place to gain a sense of geologic (or deep) time. A visit to the South or North rims, a hike into the canyon of any length, or a trip through the 277-mile (446-km) length of Grand Canyon are awe-inspiring experiences for many reasons, and they often motivate us to look deeper to understand how our human timescales of hundreds and thousands of years overlap with Earth’s many timescales reaching back millions and billions of years. This report summarizes how geologists tell time at Grand Canyon, and the resultant “best” numeric ages for the canyon’s strata based on recent scientific research. By best, we mean the most accurate and precise ages available, given the dating techniques used, geologic constraints, the availability of datable material, and the fossil record of Grand Canyon rock units. This paper updates a previously-published compilation of best numeric ages (Mathis and Bowman 2005a; 2005b; 2007) to incorporate recent revisions in the canyon’s stratigraphic nomenclature and additional numeric age determinations published in the scientific literature. From bottom to top, Grand Canyon’s rocks can be ordered into three “sets” (or primary packages), each with an overarching story. The Vishnu Basement Rocks were once tens of miles deep as North America’s crust formed via collisions of volcanic island chains with the pre-existing continent between 1,840 and 1,375 million years ago. The Grand Canyon Supergroup contains evidence for early single-celled life and represents basins that record the assembly and breakup of an early supercontinent between 729 and 1,255 million years ago. The Layered Paleozoic Rocks encode stories, layer by layer, of dramatic geologic changes and the evolution of animal life during the Paleozoic Era (period of ancient life) between 270 and 530 million years ago. In addition to characterizing the ages and geology of the three sets of rocks, we provide numeric ages for all the groups and formations within each set. Nine tables list the best ages along with information on each unit’s tectonic or depositional environment, and specific information explaining why revisions were made to previously published numeric ages. Photographs, line drawings, and diagrams of the different rock formations are included, as well as an extensive glossary of geologic terms to help define important scientific concepts. The three sets of rocks are separated by rock contacts called unconformities formed during long periods of erosion. This report unravels the Great Unconformity, named by John Wesley Powell 150 years ago, and shows that it is made up of several distinct erosion surfaces. The Great Nonconformity is between the Vishnu Basement Rocks and the Grand Canyon Supergroup. The Great Angular Unconformity is between the Grand Canyon Supergroup and the Layered Paleozoic Rocks. Powell’s term, the Great Unconformity, is used for contacts where the Vishnu Basement Rocks are directly overlain by the Layered Paleozoic Rocks. The time missing at these and other unconformities within the sets is also summarized in this paper—a topic that can be as interesting as the time recorded. Our goal is to provide a single up-to-date reference that summarizes the main facets of when the rocks exposed in the canyon’s walls were formed and their geologic history. This authoritative and readable summary of the age of Grand Canyon rocks will hopefully be helpful to National Park Service staff including resource managers and park interpreters at many levels of geologic understandings...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography