Journal articles on the topic 'Continuous flow reactor synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Continuous flow reactor synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lindeque, Rowan, and John Woodley. "Reactor Selection for Effective Continuous Biocatalytic Production of Pharmaceuticals." Catalysts 9, no. 3 (2019): 262. http://dx.doi.org/10.3390/catal9030262.
Full textDragone, Vincenza, Victor Sans, Mali H. Rosnes, Philip J. Kitson, and Leroy Cronin. "3D-printed devices for continuous-flow organic chemistry." Beilstein Journal of Organic Chemistry 9 (May 16, 2013): 951–59. http://dx.doi.org/10.3762/bjoc.9.109.
Full textHollenbach, Rebecca, Delphine Muller, André Delavault, and Christoph Syldatk. "Continuous Flow Glycolipid Synthesis Using a Packed Bed Reactor." Catalysts 12, no. 5 (2022): 551. http://dx.doi.org/10.3390/catal12050551.
Full textBálint, Erika, Ádám Tajti, Katalin Ladányi-Pára, Nóra Tóth, Béla Mátravölgyi та György Keglevich. "Continuous flow synthesis of α-aryl-α-aminophosphonates". Pure and Applied Chemistry 91, № 1 (2019): 67–76. http://dx.doi.org/10.1515/pac-2018-0923.
Full textSilva, Renan Rodrigues de Oliveira, and Mauri Sergio Alves Palma. "Flow synthesis of n-substituted 5-benzylidinethiazolidine-2,4-dione." STUDIES IN ENGINEERING AND EXACT SCIENCES 3, no. 2 (2022): 385–402. http://dx.doi.org/10.54021/sesv3n2-006.
Full textOkafor, Obinna, Andreas Weilhard, Jesum A. Fernandes, Erno Karjalainen, Ruth Goodridge, and Victor Sans. "Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles." Reaction Chemistry & Engineering 2, no. 2 (2017): 129–36. http://dx.doi.org/10.1039/c6re00210b.
Full textSuwanpitak, Kittipat, Pornsak Sriamornsak, Inderbir Singh, Tanikan Sangnim, and Kampanart Huanbutta. "Three-Dimensional-Printed Vortex Tube Reactor for Continuous Flow Synthesis of Polyglycolic Acid Nanoparticles with High Productivity." Nanomaterials 13, no. 19 (2023): 2679. http://dx.doi.org/10.3390/nano13192679.
Full textBaxendale, Ian R., Christian Hornung, Steven V. Ley, Juan de Mata Muñoz Molina, and Anders Wikström. "Flow Microwave Technology and Microreactors in Synthesis." Australian Journal of Chemistry 66, no. 2 (2013): 131. http://dx.doi.org/10.1071/ch12365.
Full textLange, Paul P., Lukas J. Gooßen, Philip Podmore, Toby Underwood, and Nunzio Sciammetta. "Decarboxylative biaryl synthesis in a continuous flow reactor." Chemical Communications 47, no. 12 (2011): 3628. http://dx.doi.org/10.1039/c0cc05708h.
Full textAndreev, D. V., L. L. Makarshin, A. G. Gribovskii, et al. "Triethanolamine synthesis in a continuous flow microchannel reactor." Chemical Engineering Journal 259 (January 2015): 252–56. http://dx.doi.org/10.1016/j.cej.2014.07.118.
Full textWaterford, Matthew, Simon Saubern, and Christian H. Hornung. "Evaluation of a Continuous-Flow Photo-Bromination Using N-Bromosuccinimide for Use in Chemical Manufacture." Australian Journal of Chemistry 74, no. 8 (2021): 569. http://dx.doi.org/10.1071/ch20372.
Full textJamison, Timothy F., Timothy M. Monos, Jonathan N. Jaworski, and John C. Stephens. "Continuous-Flow Synthesis of Tramadol from Cyclohexanone." Synlett 31, no. 19 (2020): 1888–93. http://dx.doi.org/10.1055/s-0039-1690884.
Full textBagley, Mark C., Vincenzo Fusillo, Robert L. Jenkins, M. Caterina Lubinu, and Christopher Mason. "One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor." Beilstein Journal of Organic Chemistry 9 (September 30, 2013): 1957–68. http://dx.doi.org/10.3762/bjoc.9.232.
Full textThomson, Christopher G., Ai-Lan Lee, and Filipe Vilela. "Heterogeneous photocatalysis in flow chemical reactors." Beilstein Journal of Organic Chemistry 16 (June 26, 2020): 1495–549. http://dx.doi.org/10.3762/bjoc.16.125.
Full textShukla, C. A., A. A. Kulkarni, and V. V. Ranade. "Selectivity engineering of the diazotization reaction in a continuous flow reactor." Reaction Chemistry & Engineering 1, no. 4 (2016): 387–96. http://dx.doi.org/10.1039/c5re00056d.
Full textLiu, Zhendong, Kotatsu Okabe, Chokkalingam Anand, et al. "Continuous flow synthesis of ZSM-5 zeolite on the order of seconds." Proceedings of the National Academy of Sciences 113, no. 50 (2016): 14267–71. http://dx.doi.org/10.1073/pnas.1615872113.
Full textHornung, Christian H., Miguel Á. Álvarez-Diéguez, Thomas M. Kohl, and John Tsanaktsidis. "Diels–Alder reactions of myrcene using intensified continuous-flow reactors." Beilstein Journal of Organic Chemistry 13 (January 19, 2017): 120–26. http://dx.doi.org/10.3762/bjoc.13.15.
Full textSzabó, Balázs, Kiara Szakter, Angelika Thurner, Ferenc Faigl, János Éles, and István Greiner. "A Novel, Domino Synthesis of Tricyclic Benzimidazole Derivatives Using Continuous Flow." Periodica Polytechnica Chemical Engineering 64, no. 1 (2019): 1–8. http://dx.doi.org/10.3311/ppch.14275.
Full textDunne, Peter W., Alexis S. Munn, Chris L. Starkey, Tom A. Huddle, and Ed H. Lester. "Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2057 (2015): 20150015. http://dx.doi.org/10.1098/rsta.2015.0015.
Full textBrocken, Laurens, Paul D. Price, Jane Whittaker, and Ian R. Baxendale. "Continuous flow synthesis of poly(acrylic acid) via free radical polymerisation." Reaction Chemistry & Engineering 2, no. 5 (2017): 662–68. http://dx.doi.org/10.1039/c7re00063d.
Full textHolmes, Nicholas, Geoffrey R. Akien, Robert J. D. Savage, et al. "Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors." Reaction Chemistry & Engineering 1, no. 1 (2016): 96–100. http://dx.doi.org/10.1039/c5re00083a.
Full textNakamura, Hiroyuki, Masato Uehara, and Hideaki Maeda. "Nanocrystals Synthesis by Microreactors." Advances in Science and Technology 45 (October 2006): 652–59. http://dx.doi.org/10.4028/www.scientific.net/ast.45.652.
Full textDu, Li-Hua, Miao Xue, Meng-Jie Yang та ін. "Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System". Catalysts 10, № 12 (2020): 1419. http://dx.doi.org/10.3390/catal10121419.
Full textTukacs, József M., Richard V. Jones, Ferenc Darvas, Gábor Dibó, Gábor Lezsák та László T. Mika. "Synthesis of γ-valerolactone using a continuous-flow reactor". RSC Advances 3, № 37 (2013): 16283. http://dx.doi.org/10.1039/c3ra43032d.
Full textReich, Jannis A., Miriam Aßmann, Kristin Hölting, Paul Bubenheim, Jürgen Kuballa, and Andreas Liese. "Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid." Beilstein Journal of Organic Chemistry 18 (May 20, 2022): 567–79. http://dx.doi.org/10.3762/bjoc.18.59.
Full textNitelet, Antoine, Vanessa Kairouz, Hélène Lebel, André Charette, and Gwilherm Evano. "Continuous Flow Chlorination of Alkenyl Iodides Promoted by Copper Tubing." Synthesis 51, no. 01 (2018): 251–57. http://dx.doi.org/10.1055/s-0037-1610398.
Full textNathanael, Konstantia, Nina M. Kovalchuk, and Mark J. H. Simmons. "Comparison of Microfluidic Synthesis of Silver Nanoparticles in Flow and Drop Reactors at Low Dean Numbers." Micromachines 16, no. 1 (2025): 75. https://doi.org/10.3390/mi16010075.
Full textLiu, Yawen, and Evgeny V. Rebrov. "Direct Amide Synthesis over Composite Magnetic Catalysts in a Continuous Flow Reactor." Catalysts 11, no. 2 (2021): 146. http://dx.doi.org/10.3390/catal11020146.
Full textHölting, Kristin, Miriam Aßmann, Paul Bubenheim, Andreas Liese, and Jürgen Kuballa. "Modelling Approach for the Continuous Biocatalytic Synthesis of N-Acetylneuraminic Acid in Packed Bed Reactors." Processes 12, no. 10 (2024): 2191. http://dx.doi.org/10.3390/pr12102191.
Full textWimmer, Eric, Daniel Cortés-Borda, Solène Brochard, Elvina Barré, Charlotte Truchet, and François-Xavier Felpin. "An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands." Reaction Chemistry & Engineering 4, no. 9 (2019): 1608–15. http://dx.doi.org/10.1039/c9re00096h.
Full textSiraev, Ramil, Pavel Ilyushin, and Dmitry Bratsun. "Mixing control in a continuous-flow microreactor using electro-osmotic flow." Mathematical Modelling of Natural Phenomena 16 (2021): 49. http://dx.doi.org/10.1051/mmnp/2021043.
Full textBlacker, A. John, and Katherine E. Jolley. "Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors." Beilstein Journal of Organic Chemistry 11 (December 2, 2015): 2408–17. http://dx.doi.org/10.3762/bjoc.11.262.
Full textMandai, Kyoko, Tetsuya Yamamoto, Hiroki Mandai, and Aiichiro Nagaki. "Rapid gas–liquid reaction in flow. Continuous synthesis and production of cyclohexene oxide." Beilstein Journal of Organic Chemistry 18 (June 13, 2022): 660–68. http://dx.doi.org/10.3762/bjoc.18.67.
Full textLackner, Florian, Katharina Hiebler, Bianca Grabner, and Heidrun Gruber-Woelfler. "Optimization of a Catalytic Chemoenzymatic Tandem Reaction for the Synthesis of Natural Stilbenes in Continuous Flow." Catalysts 10, no. 12 (2020): 1404. http://dx.doi.org/10.3390/catal10121404.
Full textBriggs, Michael E., Anna G. Slater, Neil Lunt, et al. "Dynamic flow synthesis of porous organic cages." Chemical Communications 51, no. 98 (2015): 17390–93. http://dx.doi.org/10.1039/c5cc07447a.
Full textKhabiyev, Alibek, Savas Dilibal, Assel Mussulmanbekova, Magzhan Kanapiya, and Daniyar Kerimkulov. "Additively Manufactured Continuous Processing Reactor System for Producing Liquid-Based Pharmaceutical Substances." Applied Sciences 14, no. 16 (2024): 6853. http://dx.doi.org/10.3390/app14166853.
Full textKermagoret, Anthony, Benjamin Wenn, Antoine Debuigne, Christine Jérôme, Thomas Junkers, and Christophe Detrembleur. "Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors." Polymer Chemistry 6, no. 20 (2015): 3847–57. http://dx.doi.org/10.1039/c5py00299k.
Full textHerath, Ananda, and Nicholas D. P. Cosford. "Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction." Beilstein Journal of Organic Chemistry 13 (February 7, 2017): 239–46. http://dx.doi.org/10.3762/bjoc.13.26.
Full textMargi, Nikhil H., and Ganapati D. Yadav. "Design and Development of Novel Continuous Flow Stirred Multiphase Reactor: Liquid–Liquid–Liquid Phase Transfer Catalysed Synthesis of Guaiacol Glycidyl Ether." Processes 8, no. 10 (2020): 1271. http://dx.doi.org/10.3390/pr8101271.
Full textBondioli, Federica, Anna Bonamartini Corradi, Anna Maria Ferrari, and Cristina Leonelli. "Synthesis of Zirconia Nanoparticles in a Continuous-Flow Microwave Reactor." Journal of the American Ceramic Society 91, no. 11 (2008): 3746–48. http://dx.doi.org/10.1111/j.1551-2916.2008.02666.x.
Full textCorradi, Anna Bonamartini, Federica Bondioli, Anna Maria Ferrari, Bonaventura Focher, and Cristina Leonelli. "Synthesis of silica nanoparticles in a continuous-flow microwave reactor." Powder Technology 167, no. 1 (2006): 45–48. http://dx.doi.org/10.1016/j.powtec.2006.05.009.
Full textLiu, Lingtao, Geng Sun, Chen Wang, et al. "Aqueous phase Fischer–Tropsch synthesis in a continuous flow reactor." Catalysis Today 183, no. 1 (2012): 136–42. http://dx.doi.org/10.1016/j.cattod.2011.09.040.
Full textLange, Paul P., Lukas J. Goossen, Philip Podmore, Toby Underwood, and Nunzio Sciammetta. "ChemInform Abstract: Decarboxylative Biaryl Synthesis in a Continuous Flow Reactor." ChemInform 42, no. 29 (2011): no. http://dx.doi.org/10.1002/chin.201129079.
Full textWatts, Paul, and Charlotte Wiles. "Micro reactors, flow reactors and continuous flow synthesis." Journal of Chemical Research 36, no. 4 (2012): 181–93. http://dx.doi.org/10.3184/174751912x13311365798808.
Full textWong, Wai Kuan, Swee Kun Yap, Yi Chen Lim, Saif A. Khan, Frédéric Pelletier, and Elena Cristina Corbos. "Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor." Reaction Chemistry & Engineering 2, no. 5 (2017): 636–41. http://dx.doi.org/10.1039/c7re00072c.
Full textShen, Bo, and Timothy F. Jamison. "Continuous Flow Photochemistry for the Rapid and Selective Synthesis of 2’-Deoxy and 2’,3’-Dideoxynucleosides." Australian Journal of Chemistry 66, no. 2 (2013): 157. http://dx.doi.org/10.1071/ch12426.
Full textLi, Mi, Xiao Wu, Dongxue Han, et al. "A High-Efficiency Single-Mode Traveling Wave Reactor for Continuous Flow Processing." Processes 10, no. 7 (2022): 1261. http://dx.doi.org/10.3390/pr10071261.
Full textSeyler, Helga, Stefan Haid, Tae-Hyuk Kwon, et al. "Continuous Flow Synthesis of Organic Electronic Materials – Case Studies in Methodology Translation and Scale-up." Australian Journal of Chemistry 66, no. 2 (2013): 151. http://dx.doi.org/10.1071/ch12406.
Full textFortunato, Milene A. G., Chi-Phong Ly, Filipa Siopa, and Carlos A. M. Afonso. "Process Intensification for the Synthesis of 6-Allyl-6-azabicyclo[3.1.0]hex-3-en-2-ol from 1-Allylpyridinium Salt Using a Continuous UV-Light Photoflow Approach." Methods and Protocols 2, no. 3 (2019): 67. http://dx.doi.org/10.3390/mps2030067.
Full textYu, Jianming, Lijie Yang, Jing Jiang, et al. "Scalable Production of High-Quality Silver Nanowires via Continuous-Flow Droplet Synthesis." Nanomaterials 12, no. 6 (2022): 1018. http://dx.doi.org/10.3390/nano12061018.
Full text