To see the other types of publications on this topic, follow the link: Continuous flow.

Journal articles on the topic 'Continuous flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Continuous flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ötvös, Sándor B. "Continuous-Flow Catalysis." Catalysts 11, no. 9 (August 31, 2021): 1066. http://dx.doi.org/10.3390/catal11091066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Britton, Joshua, Sudipta Majumdar, and Gregory A. Weiss. "Continuous flow biocatalysis." Chemical Society Reviews 47, no. 15 (2018): 5891–918. http://dx.doi.org/10.1039/c7cs00906b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golan, Abraham. "Continuous-flow vaginoscopy." Reviews in Gynaecological Practice 3, no. 4 (December 2003): 177–79. http://dx.doi.org/10.1016/s1471-7697(03)00062-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MacLaurin, Paul. "Continuous flow techniques." TrAC Trends in Analytical Chemistry 11, no. 9 (October 1992): IX—X. http://dx.doi.org/10.1016/0165-9936(92)80067-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Teissié, J. "Continuous Flow Electroporation." Nature Biotechnology 6, no. 5 (May 1988): 598. http://dx.doi.org/10.1038/nbt0588-598d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yoshida, Jun-ichi, Aiichiro Nagaki, and Daisuke Yamada. "Continuous flow synthesis." Drug Discovery Today: Technologies 10, no. 1 (March 2013): e53-e59. http://dx.doi.org/10.1016/j.ddtec.2012.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gilmore, Kerry, and Peter H. Seeberger. "Continuous Flow Photochemistry." Chemical Record 14, no. 3 (May 30, 2014): 410–18. http://dx.doi.org/10.1002/tcr.201402035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Huiyue, Zhao Jin, Xin Hu, Qiao Jin, Songwei Tan, Ali Reza Mahdavian, Ning Zhu, and Kai Guo. "Continuous flow cationic polymerizations." Chemical Engineering Journal 430 (February 2022): 132791. http://dx.doi.org/10.1016/j.cej.2021.132791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhaya, Vinay, Ramesh Joshi, and Amol Kulkarni. "Continuous-Flow Meerwein Arylation." Journal of Flow Chemistry 4, no. 4 (December 10, 2014): 211–16. http://dx.doi.org/10.1556/jfc-d-14-00023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Konstam, Marvin A., Barbara Czerska, Michael Böhm, Ron M. Oren, Jerzy Sadowski, Sanjaya Khanal, William T. Abraham, et al. "Continuous Aortic Flow Augmentation." Circulation 112, no. 20 (November 15, 2005): 3107–14. http://dx.doi.org/10.1161/circulationaha.105.555367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Miller, Leslie W. "Continuous Aortic Flow Augmentation." Circulation 118, no. 12 (September 16, 2008): 1223–24. http://dx.doi.org/10.1161/circulationaha.108.805606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Díaz-Buxó, José A., Cosme Cruz, and Frank A. Gotch. "Continuous-Flow Peritoneal Dialysis." Blood Purification 18, no. 4 (2000): 361–65. http://dx.doi.org/10.1159/000014463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Judson, George, Alan Jones, Robert Kellogg, Dean Buckner, Robert Eisel, Seymour Perry, and William Greenough. "Closed Continuous‐Flow Centrifuge." Therapeutic Apheresis 4, no. 2 (April 2000): 91–94. http://dx.doi.org/10.1046/j.1526-0968.2000.004002091.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Couprie, Camille, Leo Grady, Hugues Talbot, and Laurent Najman. "Combinatorial Continuous Maximum Flow." SIAM Journal on Imaging Sciences 4, no. 3 (January 2011): 905–30. http://dx.doi.org/10.1137/100799186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hiller, Robert A., and G. W. Swift. "Continuous‐flow thermoacoustic dehumidifier." Journal of the Acoustical Society of America 104, no. 3 (September 1998): 1772. http://dx.doi.org/10.1121/1.424100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bish, R. "Rotationally continuous plastic flow." Quarterly Journal of Mechanics and Applied Mathematics 52, no. 4 (November 1, 1999): 645–62. http://dx.doi.org/10.1093/qjmam/52.4.645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mollova, NevenaN, and KarlH Schram. "Continuous flow FAB-MS." TrAC Trends in Analytical Chemistry 10, no. 6 (June 1991): viii—ix. http://dx.doi.org/10.1016/0165-9936(91)85023-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cornwell, William K., Marcus Urey, Mark H. Drazner, and Benjamin D. Levine. "Continuous-Flow Circulatory Support." Circulation: Heart Failure 8, no. 5 (September 2015): 850–52. http://dx.doi.org/10.1161/circheartfailure.115.002472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rosinberg, Martin Luc, and Jordan M. Horowitz. "Continuous information flow fluctuations." EPL (Europhysics Letters) 116, no. 1 (October 1, 2016): 10007. http://dx.doi.org/10.1209/0295-5075/116/10007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Amerling, Richard, Claudio Ronco, and Nathan W. Levin. "Continuous-Flow Peritoneal Dialysis." Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 20, no. 2_suppl (May 2000): 172–77. http://dx.doi.org/10.1177/089686080002002s32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ronco, Claudio, and Robert Dell'Aquila. "Continuous Flow Peritoneal Dialysis." Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 21, no. 3_suppl (December 2001): 138–43. http://dx.doi.org/10.1177/089686080102103s23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stuart, M. C. "THE CONTINUOUS FLOW EVAPORATOR." Journal of the American Society for Naval Engineers 36, no. 1 (March 18, 2009): 55–65. http://dx.doi.org/10.1111/j.1559-3584.1924.tb05408.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jungerman, John A., Neal F. Peck, and Horace Hines. "Continuous flow radioactive production." International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology 16, no. 6 (January 1989): i. http://dx.doi.org/10.1016/0883-2897(89)90079-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bartroli, Jordi, and Llorenç Alerm. "Automated continuous-flow titration." Analytica Chimica Acta 269, no. 1 (November 1992): 29–34. http://dx.doi.org/10.1016/0003-2670(92)85129-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Weber, Gerhard, and Petr Boček. "Optimized continuous flow electrophoresis." Electrophoresis 17, no. 12 (1996): 1906–10. http://dx.doi.org/10.1002/elps.1150171216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Křivánková, Ludmila, and Petr Boček. "Continuous free-flow electrophoresis." Electrophoresis 19, no. 7 (June 1998): 1064–74. http://dx.doi.org/10.1002/elps.1150190704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kapauan, Amando F., and Marcelita C. Magno. "Continuous-flow injector for flow injection analysis." Analytical Chemistry 58, no. 2 (February 1986): 509–10. http://dx.doi.org/10.1021/ac00293a060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Watts, Paul, and Charlotte Wiles. "Micro reactors, flow reactors and continuous flow synthesis." Journal of Chemical Research 36, no. 4 (April 1, 2012): 181–93. http://dx.doi.org/10.3184/174751912x13311365798808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Christensen, Dawn M. "Physiology of Continuous-Flow Pumps." AACN Advanced Critical Care 23, no. 1 (January 1, 2012): 46–54. http://dx.doi.org/10.4037/nci.0b013e31824125fd.

Full text
Abstract:
The use of mechanical pumps for circulatory support started in the mid-1950s. The evolution of these devices has led to the present-day use of continuous-flow pumps to take over the function of a patient’s failing heart. The physiology associated with rotary blood pump use is quite different from normal cardiovascular physiology. Clinicians caring for patients who are supported by rotary blood pumps must have an understanding of the differences in physiology, monitoring methods, and unique complications associated with the use of these pumps.
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, An Bang, Xin Li, Yang Zhi Zhou, Ling Ling Huang, Zheng Fang, Hai Feng Gan, and Kai Guo. "Continuous Flow Synthesis of Coumarin." Advanced Materials Research 781-784 (September 2013): 936–41. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.936.

Full text
Abstract:
Flow chemistry, as a rapidly emerging technology, is exploited to provide a safe and scalable route for the pharmaceutically interesting coumarin. Here, a continuous flow approach for the generation of coumarin is reported, which relies on the two connected coil reactors design. The synthesis of coumarin has been performed successfully in high conversion on small scale and can be scaled up substantially.
APA, Harvard, Vancouver, ISO, and other styles
31

Mougeot, Romain, Philippe Jubault, Julien Legros, and Thomas Poisson. "Continuous Flow Synthesis of Propofol." Molecules 26, no. 23 (November 26, 2021): 7183. http://dx.doi.org/10.3390/molecules26237183.

Full text
Abstract:
Herein, we report a continuous flow process for the synthesis of 2,6-diisopropylphenol—also known as Propofol—a short-acting intravenous anesthesia, widely used in intensive care medicine to provide sedation and hypnosis. The synthesis is based on a two-step procedure: a double Friedel–Crafts alkylation followed by a decarboxylation step, both under continuous flow.
APA, Harvard, Vancouver, ISO, and other styles
32

Frede, Timothy Aljoscha, Manuel C. Maier, Norbert Kockmann, and Heidrun Gruber-Woelfler. "Advances in Continuous Flow Calorimetry." Organic Process Research & Development 26, no. 2 (January 19, 2022): 267–77. http://dx.doi.org/10.1021/acs.oprd.1c00437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

IRFAN. "Heterogeneous Hydrogenations in Continuous Flow." Scientia Pharmaceutica 78, no. 3 (2010): 631. http://dx.doi.org/10.3797/scipharm.cespt.8.pms04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Albero, Josep, Esther Dominguez, Avelino Corma, and Hermenegildo García. "Continuous flow photoassisted CO2 methanation." Sustainable Energy & Fuels 1, no. 6 (2017): 1303–7. http://dx.doi.org/10.1039/c7se00246g.

Full text
Abstract:
Photoassisted CO2 methanation using Ni–Al2O3/SiO2 as a photoresponsive catalyst has been carried out at 225 °C under continuous flow conditions achieving up to 3.5% conversion of CO2 with complete selectivity to CH4 under 2327 W m−2 irradiation for a contact time of 1.3 s.
APA, Harvard, Vancouver, ISO, and other styles
35

Britton, Joshua, and Colin L. Raston. "Multi-step continuous-flow synthesis." Chemical Society Reviews 46, no. 5 (2017): 1250–71. http://dx.doi.org/10.1039/c6cs00830e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Andrews, R. P. "Automated continuous flow peptide synthesis." Nature 319, no. 6052 (January 1, 1986): 429–30. http://dx.doi.org/10.1038/319429a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wu, Jueliang, Yuehao Ma, Shumeng Yin, Changbao Yin, Ke Yin, Yang Yang, and Huacheng Zhu. "Compact Microwave Continuous-Flow Heater." Processes 12, no. 9 (September 4, 2024): 1895. http://dx.doi.org/10.3390/pr12091895.

Full text
Abstract:
Microwave continuous-flow heating has been proven to reduce the time of chemical reaction, increase the conversion rate, and improve product purity effectively. However, there are still problems such as relatively low heating efficiency, unideal heating homogeneity, and poor compactness, which brings further drawbacks like difficulty in fabrication and integration. In this study, a compact microwave continuous-flow heater based on six fractal antennas is proposed to address the problems above. First, a multi-physics simulation model is built, while heating efficiency and the volumetric coefficient of variance (COV) are improved through adjusting the geometric structure of this heater and the phase assignment of each radiator. Second, an experiment is conducted to verify the simulation model, which is consistent with the simulation. Third, a method of fast varying phases to achieve greater heating efficiency and heating homogeneity is adopted. The results show that the single-phase radiator improved efficiency by 31.1%, and COV was significantly optimized, reaching 64%. Furthermore, 0–100% ethanol–water solutions are processed by the heater, demonstrating its strong adaptability of vastly changing relative permittivity of liquid load. Moreover, an advance of this microwave continuous-flow heater is observed, compared with conventional multi-mode resonant cavity. Last, the performance of this microwave continuous-flow heater as the chemical reactor for biodiesel production is simulated. This design enables massive chemical production in fields like food industry and biodiesel production, with enhanced compactness, heating efficiency, and heating homogeneity.
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, I., A. Natalio, K. N. Litwak, S. Kihara, C. F. McTiernan, A. M. Feldman, and K. L. Kormos. "PULSATILE VS CONTINUOUS FLOW LVAD." ASAIO Journal 48, no. 2 (March 2002): 150. http://dx.doi.org/10.1097/00002480-200203000-00101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hu, Xin, Ning Zhu, Zheng Fang, and Kai Guo. "Continuous flow ring-opening polymerizations." Reaction Chemistry & Engineering 2, no. 1 (2017): 20–26. http://dx.doi.org/10.1039/c6re00206d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Albert, Klaus, Michael Nieder, Ernst Bayer, and Manfred Spraul. "Continuous-flow nuclear magnetic resonance." Journal of Chromatography A 346 (January 1985): 17–24. http://dx.doi.org/10.1016/s0021-9673(00)90489-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bretan, Peter N., Peter R. Carroll, R. Dale Mcclure, and Richard D. Williams. "Improved Continuous Flow Transurethral Prostatectomy." Journal of Urology 134, no. 1 (July 1985): 77–80. http://dx.doi.org/10.1016/s0022-5347(17)46988-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Llanes, Patricia, Carles Rodríguez-Escrich, Sonia Sayalero, and Miquel A. Pericàs. "Organocatalytic Enantioselective Continuous-Flow Cyclopropanation." Organic Letters 18, no. 24 (December 7, 2016): 6292–95. http://dx.doi.org/10.1021/acs.orglett.6b03156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Angulo, Gustavo, Shabbir Ahmed, and Santanu S. Dey. "Semi-continuous network flow problems." Mathematical Programming 145, no. 1-2 (April 3, 2013): 565–99. http://dx.doi.org/10.1007/s10107-013-0675-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jennings, K. R. "Continuous-Flow Fast Atom Bombardment." International Journal of Mass Spectrometry and Ion Processes 107, no. 1 (June 1991): 141–42. http://dx.doi.org/10.1016/0168-1176(91)85079-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zalewski, Dawid R., Dietrich Kohlheyer, Stefan Schlautmann, and Han J. G. E. Gardeniers. "Synchronized, Continuous-Flow Zone Electrophoresis." Analytical Chemistry 80, no. 16 (August 2008): 6228–34. http://dx.doi.org/10.1021/ac800567n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kulkarni, Amol A., Vishwanath S. Kalyani, Ramesh A. Joshi, and Rohini R. Joshi. "Continuous Flow Nitration of Benzaldehyde." Organic Process Research & Development 13, no. 5 (September 18, 2009): 999–1002. http://dx.doi.org/10.1021/op900129w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Diehl, Christina, Paola Laurino, Nahid Azzouz, and Peter H. Seeberger. "Accelerated Continuous Flow RAFT Polymerization." Macromolecules 43, no. 24 (December 28, 2010): 10311–14. http://dx.doi.org/10.1021/ma1025253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Szilagyi, Jozsef. "Heuristic Continuous Base Flow Separation." Journal of Hydrologic Engineering 9, no. 4 (July 2004): 311–18. http://dx.doi.org/10.1061/(asce)1084-0699(2004)9:4(311).

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Park, Chan Yi, Young Joon Kim, Hyo Jin Lim, Jeong Hyeon Park, Mi Jin Kim, Seung Woo Seo, and Chan Pil Park. "Continuous flow photooxygenation of monoterpenes." RSC Advances 5, no. 6 (2015): 4233–37. http://dx.doi.org/10.1039/c4ra12965b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jasiak, A., G. Mielniczak, K. Owsianik, M. Koprowski, D. Krasowska, and J. Drabowicz. "Continuous-Flow, Michaelis−Arbuzov Rearrangement." Synfacts 15, no. 08 (July 18, 2019): 0962. http://dx.doi.org/10.1055/s-0039-1690486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography