Academic literature on the topic 'Continuous furnaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Continuous furnaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Continuous furnaces"
Odilov, Furkat, and Farrukhjon Abdullaev. "Improving The Technology Of Continuous Casting Of Steel Castings." American Journal of Engineering And Techonology 03, no. 04 (2021): 108–17. http://dx.doi.org/10.37547/tajet/volume03issue04-17.
Full textDmitriev, Andrey N., Yu A. Chesnokov, K. Chen, O. Yu Ivanov, and M. O. Zolotykh. "New Monitoring System of Firebrick Lining Deterioration of Blast Furnace Devil in Metallurgical Plants of China." Advanced Materials Research 834-836 (October 2013): 939–43. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.939.
Full textHassan, Alaa A., and Mohamed S. Hamed. "Modeling of Heat Treatment of Randomly Distributed Loads in Multi-Zone Continuous Furnaces." Materials Science Forum 706-709 (January 2012): 289–94. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.289.
Full textBogatova, M. Zh, and S. I. Chibizova. "Statistical modeling of temperature operating modes of heating furnaces for hot strip mills." Izvestiya. Ferrous Metallurgy 64, no. 5 (2021): 374–81. http://dx.doi.org/10.17073/0368-0797-2021-5-374-381.
Full textSteinboeck, A., D. Wild, and A. Kugi. "Feedback Tracking Control of Continuous Reheating Furnaces." IFAC Proceedings Volumes 44, no. 1 (2011): 11744–49. http://dx.doi.org/10.3182/20110828-6-it-1002.01639.
Full textSteinboeck, A., D. Wild, and A. Kugi. "Energy-Efficient Control of Continuous Reheating Furnaces." IFAC Proceedings Volumes 46, no. 16 (2013): 359–64. http://dx.doi.org/10.3182/20130825-4-us-2038.00007.
Full textYıldız, Ersin, Altuğ Melik Başol, and M. Pınar Mengüç. "Segregated modeling of continuous heat treatment furnaces." Journal of Quantitative Spectroscopy and Radiative Transfer 249 (July 2020): 106993. http://dx.doi.org/10.1016/j.jqsrt.2020.106993.
Full textNaizabekov, A. B., V. A. Talmyazan, and N. V. Akhmetgalina. "Simulation of slab heating in continuous furnaces." Steel in Translation 40, no. 6 (2010): 577–81. http://dx.doi.org/10.3103/s0967091210060161.
Full textBach, Friedrich Wilhelm, Kai Möhwald, and Ulrich Holländer. "Physico-Chemical Aspects of Surface Activation during Fluxless Brazing in Shielding-Gas Furnaces." Key Engineering Materials 438 (May 2010): 73–80. http://dx.doi.org/10.4028/www.scientific.net/kem.438.73.
Full textRoberts, P., L. Els, and G. Kornelius. "Design considerations for a continuous emission measurement system for pressure type bag houses." Clean Air Journal 24, no. 2 (2014): 8–11. http://dx.doi.org/10.17159/caj/2014/24/2.7067.
Full textDissertations / Theses on the topic "Continuous furnaces"
Dahlqvist, v. "Increase the capacityof continuous annealing furnaces at Ovako." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161909.
Full textFong, Douglas S. 1970. "Evaluation of continuous batch processing for vertical diffusion furnaces." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50399.
Full textIncludes bibliographical references (p. 68-69).
by Douglas S. Fong.
M.S.
Zareba, Sebastian [Verfasser]. "Modeling, parameter estimation, and optimization of continuous annealing furnaces in strip rolling lines / Sebastian Zareba." Aachen : Shaker, 2017. http://d-nb.info/1138178756/34.
Full textBjörn, Linnéa, and Malin Forslin. "Continuous Measurements of the Pig-Iron Temperature." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101757.
Full textZhang, Yanjun. "Scrap melting in a continuous process rotary melting furnace." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31195.
Full textApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Lu, Yu-Chiao. "Design of Bridgman unidirectional solidification furnace." Thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261191.
Full textExamensarbetet består av två delar. Först utvecklingen av tvådimensionella numeriska modeller av en Bridgman enkelriktad stelningsugn, och för det andra konstruktionsarbetet för ugnen vid KTH. Syftet är att bygga en Bridgman-ugn som har förmåga att kontrollera temperaturgradienten och tillväxthastigheten så att stelningsstrukturerna i ett duplex-rostfritt stål (SAF2507) skulle kunna replikeras i laboratorieskala för olika kylningshastigheter. Två numeriska modeller av Bridgman-ugnen skapas med COMSOL Multiphysics. Modellerna används som prediktiva verktyg för att simulera placeringen av stelningsfronten och temperaturgradienterna vid stelningsfronterna, vilket är parametrar som är svåra att komma åt under experiment. Olika varmzonstemperaturer i ugnen (1500~1550 °C) och olika provdragningshastigheter (0.5~10 mm/s) studeras i simuleringar. Det viktigaste fyndet från modellerade resultat är att provets temperaturgradient vid stelningsfronterna sträcker sig från 5 ~17 K/mm, vilket är lägre än ugns temperaturgradient på ~ 50 K/mm. Motsvarande stabilitetskylningshastigheter varierar mellan 5 ~ 85 K/s. Nästa steg är att validera modellerna med experimentella temperaturprofiler för ugnen och bestämma om ugnsutformningen ska modifieras för att uppnå intressens kylningshastigheter.
MACHADO, ADELMO CRESPO. "NUMERICAL HEAT TRANSFER ANALYSIS OF A STEEL RIBBON SUBJECTED TO HEATING IN A CONTINUOUS FURNACE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1989. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20519@1.
Full textIn the present thesis the energy equation is solved for the temperature distribution in a two dimensional steel strip, which moves with Constant velocity through a furnace and is submited to several different radiation and convection fluxes. Steady state conditions are supposed to exist, if the reference frame is attached to the furnace walls. Thus, one more term arises in the energy equation to take into account the strip movement. The non-linearity of the problem is restricted to the radiation boundary conditions. The discretized algebraic equations are set up, utilizing a finite difference, scheme with the control volume approach. The complete set of equations has shown that there are seven non-dimensional parameters to be specified. Due to the elliptic nature of the equation, it was stabilished that at some distance before and after the furnace, the axial heat conduction in the strip would vanish. A first attempt was done in order to find these distances. The results have shown that the boundary condition after the furnace, the axial heat conduction in the strip would vanish. A first attempt was done in order to find these distances. The results have shown that the boundary condition after the furnace could be substituted, taking a section of the strip closer to the furnace outlet and simply stating the heat flux balance in terms of conduction, convection and radiant emission, considering that this is an end of the strip. Examining the resultant temperature profiles and the heat exchanged by the strip, the influence of each non-dimensional parameter was investigated. Three of them are believed to be the more important: the péciét number related to the furnace rate of production, the incident radiation parameter related to the rate of fuel consumption and the geometrical aspect ratio of the strip. A thermal abalysis of the furnace was then carried out, in order to achieve prescribed data on averade temperature of the strip at the furnace outlet, degree od temperature homogenelty in the strip and heat transfer efficiency. To make a more realistic simulation of the furnace, it was also subdivided into three cones of different incident radiation fluxes and then typical operational situations could be reproduced, as they usually occur in slab reheating furnaces. These simulations were compared with data available in the literature, showing a reasonable qualitative accordance with them.
Vanhatalo, Erik. "Contributions to the use of designed experiments in continuous processes : a study of blast furnace experiments." Licentiate thesis, Luleå : Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1757/2007/66/.
Full textShinohara, Asako. "Continuous and discrete model-based robust controllers with application to an electric arc furnace cooling system." Thesis, Coventry University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369973.
Full textJames, William. "Operational aspects, failures and design of radiant tube heater systems in a continuous strip annealing furnace." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/15076/.
Full textBooks on the topic "Continuous furnaces"
Andreev, Andreĭ Dmitrievich. Plavka ali︠u︡minievykh splavov v shakhtnykh pechakh. "Metallurgii︠a︡", 1988.
Book chapters on the topic "Continuous furnaces"
Tassot, Patrick, Jörg Fernau, and Hugues Lemaistre. "Energy Savings and Improvement of Productivity in Continuous Reheating Furnaces." In Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013). John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118837009.ch65.
Full textVodak, Peter. "Continuous Measurement of Furnace Moisture." In 67th Porcelain Enamel Institute Technical Forum: Ceramic Engineering and Science Proceedings, Volume 26, Number 9. John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291290.ch15.
Full textBjörklund, Peter, Mikko Korpi, David Grimsey, and Miikka Marjakoski. "Continuous Improvement of Process Advisor Optimizing Furnace Model." In The Minerals, Metals & Materials Series. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65647-8_22.
Full textToulouevski, Yuri N., and Ilyaz Y. Zinurov. "Modern EAFs and Technology of the Heat with Continuous Charging of Scrap into Flat Bath." In Electric Arc Furnace with Flat Bath. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15886-0_1.
Full textBerroth, Karl, Rolf Wagner, and Heinz U. Kessel. "Continuous Sintering Furnace for Non Oxide Ceramic Matrix Composites." In High Temperature Ceramic Matrix Composites. Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527605622.ch56.
Full textSimpson, Neil G., Mark Bennett, and S. Fiona Turner. "Use of Continuous Infrared Temperature Image to Optimize Furnace Operations." In 78th Conference on Glass Problems. John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119519713.ch5.
Full textTa, Yasutaka, Hiroyuki Tobo, Hisahiro Matsunaga, and Keiji Watanabe. "Development of Continuous Blast Furnace Slag Solidification Process for Coarse Aggregates." In The Minerals, Metals & Materials Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72138-5_3.
Full textHundermark, Rodney, Quintin van Rooyen, Paul van Manen, Chris Steyn, Afshin Sadri, and David Chataway. "Development of Continuous Radar Level Measurement for Improved Furnace Feed Control." In The Minerals, Metals & Materials Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_23.
Full textHe, Mingsheng, Guohua Xie, Xuecheng Gong, Wangzhi Zhou, Jing Zhang, and Jian Xu. "Buildup Formation Mechanism of Carbon Sleeve in Continuous Annealing Furnace for Silicon Steel." In The Minerals, Metals & Materials Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_40.
Full textLi, Yang Long, Shun Ming Liu, Da Wei Hou, Wei Guo, Hui Wang, and Meng Yu. "Stress Analysis and Structure Optimization of W-Shaped Radiant Tube in Continuous Annealing Furnace." In TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05861-6_104.
Full textConference papers on the topic "Continuous furnaces"
Steinboeck, Andreas, and Andreas Kugi. "Optimized pacing of continuous reheating furnaces." In 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669132.
Full textBernard, Benjamin T. "Techniques and Equipment Types to Harden Gears." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021exabp0009.
Full textSiddiqui, Faizan P., Kaan Meneksedag, Altug M. Basol, and M. Pinar Menguc. "SEGREGATED APPROACH FOR THE MODELING OF CONTINUOUS HEAT TREATMENT FURNACES." In Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19. Begellhouse, 2019. http://dx.doi.org/10.1615/rad-19.90.
Full textLille, Simon, Wlodzimierz Blasiak, Magnus Mo¨rtberg, Tomasz Dobski, and Weihong Yang. "Heat Flux Evaluation in a Test Furnace Equipped With High Temperature Air Combustion (HTAC) Technique." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26031.
Full textFedorov, Sergey S., Mykhailo V. Gubynskyi, Igor V. Barsukov, Mykola V. Livitan, Oleksiy G. Gogotsi, and Upendra Singh Rohatgi. "Modeling the Operation Regimes in Ultra-High Temperature Continuous Reactors." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22161.
Full textCarroll, B., S. Kharkovsky, R. Zoughi, R. Limmer, Donald O. Thompson, and Dale E. Chimenti. "FREQUENCY-MODULATED CONTINUOUS-WAVE (FM-CW) RADAR FOR EVALUATION OF REFRACTORY STRUCTURES USED IN GLASS MANUFACTURING FURNACES." In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP, 2009. http://dx.doi.org/10.1063/1.3114260.
Full textMalikov, German, Vladimir Lisienko, Yuri Malikov, Yaroslav Chudnovsky, and Raymond Viskanta. "A Coupled Solution Procedure for Zonal Radiative and Convective Heat Transfer in 3-D Enclosures With Blockages and Screens." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43154.
Full textMore, Karren L., Peter F. Tortorelli, and Larry R. Walker. "Verification of an EBC’s Protective Capability by First-Stage Evaluation in a High Temperature, High-Pressure Furnace." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38923.
Full textDallaire, S., and H. Levert. "Erosion Resistance of Arc Sprayed Coatings to Iron Ore at 25°C and 330°C." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0065.
Full textAzzazy, Salah E., Russell D. Cochran, and Larry Sam Cox. "Bull Run Fossil Plant: Technical Design Methods for Superheat Pendant Outlet Headers Replacement." In ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27007.
Full textReports on the topic "Continuous furnaces"
Wong, J. K., G. N. Banks, and H. Whaley. Combustion evaluation of Canadian occidental water continuous emulsions in CCRL's pilot-scale combustion furnaces. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/304457.
Full textSrinivasan, M. N. Continuous austempering fluidized bed furnace. Final report. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/532525.
Full text