Dissertations / Theses on the topic 'Continuous-time Delta-Sigma modulator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Continuous-time Delta-Sigma modulator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yang, Xi S. M. Massachusetts Institute of Technology. "Design of a continuous-time bandpass delta-sigma modulator." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87939.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 103-105).
An 8th-order continuous-time (CT) bandpass delta-sigma modulator has been designed and simulated in a 65 nm CMOS process. This modulator achieves in simulation 25 MHz signal bandwidth at 250 MHz center frequency with a signal-to- noise ratio (SNR) of 75.5 dB. The modulator samples at 1 GS/s while consuming 319 mW. On the system level, the feedback topology secures stability for the 8th-order system, achieving a maximum stable input range of -1.9 dBFS. A 2.5-V/1.2-V dual-supply loop filter with a feed-forward coupling path has been proposed to suppress noise and distortion. On the transistor level, a 5th -order dual-supply feed-forward operational amplifier (op amp) and a 4th-order single-supply feed-forward op amp have been designed to enable high modulator linearity and coefficient accuracy.
by Xi Yang.
S.M.
Ding, Chongjun [Verfasser], and Yiannos [Akademischer Betreuer] Manoli. "Design study of high-speed continuous-time delta-sigma modulator." Freiburg : Universität, 2016. http://d-nb.info/1122647026/34.
Full textJuang, Philip Weimin 1978. "A continuous time sigma-delta modulator for digitizing carrier band measurements." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86681.
Full textIncludes bibliographical references (p. 135-136).
by Philip Weimin Juang.
M.Eng.
Chu, Chao [Verfasser]. "A high speed/high linearity continuous-time delta-sigma modulator / Chao Chu." Ulm : Universität Ulm, 2017. http://d-nb.info/1147848033/34.
Full textChi, Jiazuo. "Micro-Power Inverter-Based Continuous-Time Sigma-Delta Modulator for Biosensor Applications." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177367.
Full textYoon, Do Yeon. "A continuous-time multi-stage noise-shaping delta-sigma modulator with analog delay." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75689.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 73-75).
A new continuous-time multi-stage noise-shaping delta-sigma modulator has been designed. This modulator provides high resolution and robust stability characteristics which are the primary advantages of the conventional multi-stage noise-shaping architecture. At the same time, previous critical challenges that degraded the overall performance of multi-stage noise-shaping delta-sigma modulators are eliminated through several unique techniques. Additionally, these techniques relax the requirements of each component of the proposed delta-sigma modulator. As a result, this new delta-sigma modulator architecture can provide several advantages that are not obtainable in other modulator architectures.
by Do Yeon Yoon.
S.M.
Pěček, Lukáš. "Návrh Sigma Delta AD převodníku pro senzorové aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317221.
Full textLiu, Xuemei. "Design of a 125 mhz tunable continuous-time bandpass modulator for wireless IF applications." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3257.
Full textMelo, João Luís Alvernaz de. "Design of a Continuous-Time (CT) Sigma-Delta modulator for class D audio power amplifiers." Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/13154.
Full textYoon, Do Yeon. "A continuous-time multi-stage noise-shaping delta-sigma modulator for next generation wireless applications." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99854.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 115-121).
A continuous-time (CT) delta-sigma ([delta][sigma]) modulator for modern wireless communication applications is investigated in this thesis. Quantization noise is suppressed aggressively by increasing the effective order of the noise transfer function (NTF). In order to increase the effective order of the NTF, a 2-loop sturdy multi-stage noise-shaping (SMASH) architecture is utilized. The proposed CT SMASH architecture has a much wider signal bandwidth which was limited in the discrete-time (DT) SMASH architecture due to the inherent sampling frequency limitation of the DT implementation. Furthermore, the proposed CT SMASH architecture provides a better quantization noise suppression capability than the DT SMASH architecture by more completely canceling the quantization noise from the first loop. The CT SMASH architecture is implemented with several circuit techniques suitable for high operation speed. These circuit techniques allow the proposed CT [delta][sigma] modulator to achieve wide bandwidth, high resolution, and low power consumption for modern wireless communication applications. As a result, the prototype fabricated in 28nm CMOS achieves DR of 85dB, peak SNDR of 74.9dB, SFDR of 89.3dBc and Schreier FOM of 172.9dB over a 50MHz bandwidth at a 1.8GHz sampling frequency.
by Do Yeon Yoon.
Ph. D.
Pereira, Nuno Ruben Ferreira. "Implementation of a sigma delta modulator for a class D audio power amplifier." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10046.
Full textDobson, Kevin. "A 100 MHz 6th Order Continuous Time Band-Pass Sigma Delta Modulator with Active Inductor Resonators." Thesis, The George Washington University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10085732.
Full textBand-Pass Sigma Delta Modulators allow for the digitization of a carrier signal directly without frequency down conversion to baseband. This results in a simpler and more economical RF receiver front end. The holy grail of signal processing is to develop a Band-Pass Analog to Digital Converter operating at a high enough frequency to digitize high frequency RF signals such as Wi-Fi or cell phone carriers without the need for complicated Filters, Mixers and Amplifiers in the receiver front end.
Continuous Time Band-Pass Sigma Delta Analog to Digital Converters are potentially one technology that can be used to realize this goal because of their ability to operate at higher frequencies than their switched capacitor counterparts. Current Continuous Time Band-Pass Sigma Delta Modulators utilize LC circuits as resonators. This leads to a design that occupies a large die area. In fact, in many designs the area of the spiral inductors occupies more than half the design area. Another drawback of using spiral inductors is the limited quality factor. In order for there to be a high dynamic range at the output of a sigma delta modulator it is necessary to have resonators with high quality factors. We investigate the effects of replacing spiral inductors with high quality factor active inductor resonators with negative impedance circuits.
CMOS is a fairly cheap technology when compared to other ASIC design technologies. It also offers lower power consumption but its operating frequencies are somewhat lower. We have chosen to use CMOS technology for our design because of its economy and low power consumption. We have been able to design and simulate a 6th order, continuous time Band-Pass Sigma Delta modulator in IBM 0.18u cmrf7sf CMOS technology. Cadence schematic simulations show a modulator with a high dynamic range and decreased area usage.
Pad to pad simulation of the extracted layout in Cadence yields an enhanced peak SNDR of 73 dB with a noise bandwidth of 36 kHz and a power consumption of 12 mW. This modulator occupies 2.05 mm2 of active die area.
ALGHAMDI, ALI SAAD. "DESIGN AND PERFORMANCE ANALYSIS OF AN OPTICAL PROTERETIC DELTA-SIGMA MODULATOR." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1331.
Full textTalebzadeh, Jafar. "A continuous-time time-interleaved delta-sigma modulator with a novel solution to the delayless feedback path problem for high bandwidth applications." Thesis, University of Westminster, 2017. https://westminsterresearch.westminster.ac.uk/item/q3z21/a-continuous-time-time-interleaved-delta-sigma-modulator-with-a-novel-solution-to-the-delayless-feedback-path-problem-for-high-bandwidth-applications.
Full textAguirre, Paulo Cesar Comassetto de. "Projeto e análise de moduladores sigma-delta em tempo contínuo aplicados à conversão AD." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/105065.
Full textAnalog-to-Digital Converters (ADCs) play a fundamental role in the implementation of current systems-on-chip (SoC). Due to the requirements of these systems and the tradeoffs between the main ADCs characteristics, such as signal bandwidth, power consumption and accuracy, many topologies and strategies for their implementation in integrated circuits (ICs) have been developed through the ages. Among these topologies, the sigmadelta converters (SDC) have highlighted the versatility combined with low power consumption and excellent accuracy. Initially developed and used for the conversion of low frequency signals and operation in the discrete time (DT) domain, this class of converters have been evolved and developed over the past to operate in continuous time domain for the conversion of signals with frequencies of hundreds of kHz up to tens of MHz. In this work, continuous time sigma-delta modulators (CT-SDMs) are studied focusing its application to the analog-to-digital (AD) conversion. CT-SDMs offer significant advantages over their discrete-time counterparts, such as lower power consumption, higher input signal bandwidth and implicit anti-alias filter (AAF). However, CT-SDMs present additional limitations that are responsible for their performance degradation, such as the clock jitter, Excess Loop Delay (ELD) and the limitations imposed on the analog integrators. After the study and analysis of CT-SDMs and their performance limitations, a behavioral model approach was developed in the Matlab/Simulink R environment, which allows the simulation of the limitations impact on the modulator, allowing the obteinment of a more accurate estimate of its performance. Based on these simulations it was possible to determine the minimum specifications for each block that composes the analog modulator (such as slew rate, the unity gain frequency (fu) and the DC gain of the operational amplifiers used in integrators) and tolerable values of ELD and clock jitter. Additionally, it was developed in this work a methodology for simulate CT-SDMs with Switched-Capacitor- Resistor (SCR) DACs that provide exponential waveforms. Based on this model and the study of different SDMs topologies, it was developed a low-pass, single-loop, single-bit, third order circuit focused on low-power intended for application in RF receivers. This circuit was developed in an IBM 130 nanometers CMOS technology, and was send to manufacturing. Based on the post-layout simulations it is expected to have performance close to what has been recently published of low-pass, single-loop, single-bit CT-SDMs.
Mariano, André Augusto. "Mixed Simulations and Design of a Wideband Continuous-Time Bandpass Delta-Sigma Converter Dedicated to Software Dfined Radio Applications." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13644/document.
Full textWireless front-end receivers of last generation mobile devices operate at least two frequency translations before I/Q demodulation. Frequency translation increases the system complexity, introducing several problems associated with the mixers (dynamic range limitation, noise injection from the local oscillator, etc.). Herein, the position of the analog-to-digital interface in the receiver chain can play an important role. Moving the analog-to-digital converter (ADC) as near as possible to the antenna, permits to simplify the overall system design and to alleviate requirements associated with analog functions (filters, mixers). These currently requirements have led to a great effort in designing improved architectures as Continuous-Time Delta-Sigma ADCs. The behavioural modeling this converter, although the circuit design of the main blocks has been the subject of this thesis. The use of an advanced design methodology, allowing the mixed simulation at different levels of abstraction, allows to validate both the circuit design and the overall system conversion. Using a multi-feedback architecture associated with a multi-bit quantizer, the continuous-time Bandpass Delta-Sigma converter achieves a SNR of about 76 dB in a wide band of 20MHz
Öberg, Eric, and Gustav Kindeskog. "16 GS/s Continuous-Time ΣΔ Modulator in a 22 nm SOI Process : a Simulation and Feasibility Study." Thesis, Linköpings universitet, Tekniska fakulteten, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155781.
Full textPATEL, VIPUL J. "BEHAVIORAL SIMULATION AND SYNTHESIS ENVIRONMENT FOR CONTINUOUS-TIME SINGLE-LOOP SINGLE-BIT BASEBAND DELTA-SIGMA ANALOG-TO-DIGITAL MODULATORS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147473065.
Full textHardy, Emmanuel. "Etude et développement d'un amplificateur audio de classe D intégré haute performance et basse consommation." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4722/document.
Full textMost current embedded devices, such as smartphones, GPS or portable consoles, feature one speaker or more, those speakers being driven by an integrated audio amplifier. This type of amplifier must meet four specifications: an adequate audio quality, to be immune to system disturbances, low power consumption and the smallest silicon area. This work takes its origin from the creation of Primachip in May 2009 by Christian Dufaza and Hassan Ihs. The aim of this startup was to develop and sell an innovative audio class-D amplifier for mobile market: the digital class-D concept. A partnership with the IM2NP laboratory was decided to propose a PhD topic under CIFRE contract (PhD in an industrial environment), in order to study and improve the amplifier architecture. Its originality is in the partial feedback concept which applies to a loop made of a digital ΔΣ modulator driving the power stage, with an analogue-to-digital converter (ADC) in the feedback path. It makes it possible to achieve stability while offering an outstanding power supply rejection. An integrated prototype of the class-D amplifier was designed, fabricated and evaluated. A new continuous-time ΔΣ ADC has been added to enable the digital class-D loop to achieve performances superior or equal to state of the art. The circuit measurement results were encouraging, although not ideal. The analysis of the prototype errors was performed. The conclusions should allow the design of an integrated audio amplifier making the best of the digital class-D architecture
Baltolu, Anthony. "Etude et conception analogique d’architectures d’acquisition acoustique très faible consommation pour applications mobiles." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0339/document.
Full textThe recent technological advances in microelectromechanical system (MEMS) microphones allow them to be used on a large sound amplitude range. Due to their lower noise level, it becomes possible to capture sound from a faraway distance, while their increased acoustic overload point gives them the ability to capture sound without saturation in a loud environment like a concert or a sport event. Thus, the electronic analog / digital conversion system connected to the microphone becomes the limiting element of the acoustic acquisition system performance. There is then a need for a new analog / digital conversion architecture which has an increased dynamic range. Furthermore, since more and more of these microphones are used in battery-powered devices, the power consumption limitation constraint becomes of high importance.In the audio frequency band, the sigma-delta analog / digital converters are the ones most able to provide a high dynamic range combined to a limited power consumption. They are split in two families: the discrete-time ones using switched-capacitors circuits and the continuous-time ones using more classical structures. This thesis concentrates on the study and the design of both of these two types of sigma-delta converters, with an emphasis on the low-power consumption, the low production cost (area occupied) and the circuit robustness, in sight of a mass production for portable devices.A discrete-time sigma-delta modulator design has been made, the latter reaching a signal to noise ratio of 100dB on a 24kHz frequency bandwidth, for a power consumption of only 480μW. To limit the power consumption, new inverter-based amplifiers are used, with an improved robustness against the variations of the fabrication process or the temperature. Amplifier specifications are obtained thanks to an accurate high-level model developed, which allows to avoid over-design while ensuring that the wanted performances are reached. Finally, a large oversampling ratio has been used to reduce the switched-capacitors area, lowering the modulator cost.After a theoretical study of the equivalence between discrete-time and continuous-time modulators, and of continuous-time modulators specificities, a design of the latter has been made too. It reaches a signal to noise ratio of 95dB on a 24kHz bandwidth, while consuming 142μW. To reduce the power consumption and the occupied area, a second-order loop filter is implemented using a single amplifier, and the quantizer uses a VCO-based structure that provides inherently an integrating stage. The VCO-based quantizer is made using digital cells, lowering the consumption and area, but is highly non-linear. This non-linearity has been handled by architectural choices to not influence the final modulator performances
Ali, Furrookh. "Noise-shaping enhancement in continuous-time delta-sigma modulators." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66679.
Full textUne technique est présentée pour la conception du modulateur delta-sigma en temps continu (CT) ordre-haut avec amélioration de la fonction de transfert du bruit (NTF). Cette amélioration est obtenue par injection du bruit de quantification dans la chemin feedforward du modulateur delta-sigma CT, via un filtre passif CT. Ce filtre passif introduit une paire de pôle-zéro réel dans la NTF. Donc, l'ordre de la NTF est augmenté, sans affecter la fonction de transfert du signal (STF). La technique proposé pour l'amélioration de la NTF est appliquée à un modulateur delta-sigma CT avec une architecture feedforward-capacitive, où tous les chemins feedforward sont ajoutée dans le dernier intégrateur du filtre de boucle delta-sigma . Ceci élimine la nécessité d'un amplificateur de sommation analogique à la sortie du filtre de boucle delta-sigma. Les résultats de simulation du comportement et niveau circuit confirment que la proposition du modulateur delta-sigma CT feedforward avec amélioration de la NTF a permis d'améliorer le bruit-façonnement et les caractéristiques de stabilité, par rapport aux modulateurs delta-sigma CT classiques.
Zare-Hoseini, Hashem. "Continuous-Time Delta-Sigma Modulators with Immunity to Clock-Jitter." Thesis, University of Westminster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500545.
Full textJiang, Yang. "Clock-jitter insensitive circuit techniques in continuous-time sigma-delta modulators." Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2590641.
Full textPeev, Pavel. "An anti-aliasing filter based on continuous-time delta-sigma modulation." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86920.
Full textUn filtre anticrénelage qui incorpore un échantillonneur est proposé ci-après. Son architecture s'inspire des proprietés d'anticrénelage des modulateurs delta-sigma (DS) en temps continu (TS). Néanmoins, contrairement aux modulateurs DS TC, le filtre proposé n'est pas victime de la sensibilité au bruit d'horloge. De plus, ce filtre anticrénelage possède entre autres les qualités suivantes: 1) Réduction élevée des créneaux non désirés - en comparaison par exemple aux crénaux d'un filter Butterworth du même ordre - ceci grâce à la présence de points rejet dans le réponse du filtre aux multiples de la fréquence d'èchantillonnage; 2) Transformation passe-haut des erreurs d'échantillonnage, de façon similaire à la transfomation du bruit de quantification dans les modulateurs DS; 3) Préservation de la suppression des créneaux a travers une bande large de fréquences d'échantillonnage; ce qui en permet l'usage banalisé sous forme de block de propriété intellectuelle (PI). Ainsi, le filtre d'échantillonnage anticrénelage proposé ci-après est particulièrement adéquat à l'entrée de la transformation de bruit d'un convertisseur analogue-numérique (CAN) comme les CAN a temps discrets. La performance de ce filtre est dérivée de manière théorique et confirmée par des simulations.
Garcia, Julian. "Digitally Enhanced Continuous-Time Sigma-Delta Analogue-to-Digital Converters." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95447.
Full textQC 20120528
Lee, Hyunjoo Jenny. "The effects of excess loop delay in continuous-time sigma-delta modulators." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/36787.
Full textIncludes bibliographical references (p. 79-80).
Continuous-time sigma-delta (CT-Sigma Delta) modulators have recently received great attention in the academia as well as in the industry. Despite the improved understanding of the operation of CT-Sigma Delta modulators, the problem due to excess loop delay that arises from timing mismatch and parasitic delay still remains unsolved. Thus, the thesis investigates the effects of the excess loop delay. In specific, the sensitivity of various CT-Sigma Delta topologies to the excess loop delay is explored by converting the CT modulators to its DT equivalents and realizing loop filters in state-space representations in MATLAB ©.
by Hyunjoo Jenny Lee.
M.Eng.
Kulchycki, Scott Douglas. "Continuous-time [sigma-delta] modulation for high-resolution, broadband A/D conversion /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textGao, Xi. "Digital RF-over-Fiber Links Based on Continuous-Time Delta Sigma Modulation." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1579018039888542.
Full textTao, Sha. "Power-Efficient Continuous-Time Incremental Sigma-Delta Analog-to-Digital Converters." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-164282.
Full textQC 20150422
Marefat, Fatemeh. "Toward Cuffless Blood Pressure Monitoring: Integrated Microsystems for Implantable Recording of Photoplethysmogram." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595441087168539.
Full textPark, Matthew (Matthew J. ). "An optical-electrical sub-sampling down-conversion receiver with continuous-time [Sigma] [Delta] modulation." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33332.
Full textIn title on t.p., [Sigma] and [Delta] appear as the upper-case Greek letters.
Includes bibliographical references (p. 87-89).
This thesis describes the design and implementation of an optical-electrical sub-sampling down-conversion receiver that employs [Sigma] [Delta] modulation. Accurate sub-sampling of an electrical RF signal in the optical domain is achieved by using a low-jitter mode-locked-laser and a high-bandwidth interferometer. The sub-sampled information is then digitized by an optical-electrical continuous-time (CT) [Sigma] [Delta] analog- to-digital converter (ADC). Here, photodiodes and low-jitter pulses from the mode- locked-laser are leveraged to perform signal clocking and quantizer pre-amplification, overcoming digital-to-analog converter (DAC) clock jitter and quantizer metastability issues that plague traditional electronic implementations. The optical-electrical converter achieves 76.5 dB of SNR (12.4 ENOB) with a 1 MHz signal bandwidth and a sampling rate of 780 MHz. The chip was implemented using a standard bulk 0.18 [mu]m CMOS process from National Semiconductor, occupies a total area of 3 mm2, and consumes 45 mW of power.
by Matthew Park.
M.Eng.
Pham, Dang Kien Germain. "Conversion analogique-numérique Sigma-Delta large bande appliquée à la mesure des non-linéarités des amplificateurs de puissance." Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0003/document.
Full textPower amplifiers, which are essential elements of any communication system, will play a crucial role in the development of future communication systems. Today improving power amplifiers requires technological advances at the circuit device level, but one also must consider a more global approach. In particular, advances in digital processing can now correct in the early stage of the communication chain some distortions that are generated downstream in the chain. Digital pre-distortion is a correction technique for power amplifiers that has a growing interest because of its completely digital implementation and of its gains in linearity and energy consumption. This technique requires a feedback path where the analog-to-digital converter is a critical element. This component must satisfy the constraints of high resolution , wide bandwidth, and high linearity. In this thesis, we propose a new architecture of analog-to-digital converter based on bandpass Delta-Sigma modulators. This architecture takes advantage of operating bandpass modulators that are designed to work in parallel, each focusing on different frequencies, but also of a particular cascading arrangement to eliminate the useful signal, which has a high power, in order to reduce dynamics constraints. High-level design and simulations were carried out for discrete time and continuous time systems and also required the development of appropriate simulation tools
Cherry, James A. "Theory, practice, and fundamental performance limits of high-speed data conversion using continuous-time delta-sigma modulators." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ37061.pdf.
Full textAmayreh, Mohammad Abdeljaleel [Verfasser], and Yiannos [Akademischer Betreuer] Manoli. "Sub-pA fully integrated CMOS current-mode continuous-time delta-sigma modulators for biological nanopore read-out." Freiburg : Universität, 2019. http://d-nb.info/1191689492/34.
Full textSamid, Lourans. "The design of low power and low voltage continuous time sigma-delta modulators with single bit and multibit quantizer /." [S.l. : s.n.], 2004. http://swbplus.bsz-bw.de/bsz115637230abs.htm.
Full textLeitão, Pedro Miguel Vicente. "Design of a power output stage for a class D audio power amplifier based on an 1.5-bit ∑ ∆ M." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10229.
Full textFakhoury, Hussein. "Conception de modulateurs Delta-Sigma passe-bas en technologie CMOS pour des applications à large bande passante et haute résolution." Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0088/document.
Full textThe market of A/D converters can be segmented in two categories. From one side we distinguish the Intellectual Property (IP) blocks that are generally optimized for a specific application. On the other side, the general-purpose discrete Integrated Circuits (ICs) that are designed such as they could be used in different applications. This thesis work deals with the second category. It is part of a research and development program initiated in 2010 in the European project FP7 SACRA, whose purpose was to study the feasibility of a delta-sigma (DS) analog-to-digital converter that could compete with the pipeline architecture for applications that require high bandwidth (≥10MHz) and high resolution (>10-bit) such as medical imaging, wireless and wireline communications, video or instrumentation. Currently, the pipeline is still largely predominant for such applications and the few commercial wideband solutions based on a DS architecture have a signal bandwidth limited to 10 MHz or 25 MHz while consuming respectively 100mW and 20mW for an ENOB around 12-bit. This manuscript summarizes the design, fabrication and measurement of a low-pass CT DS modulator with a signal bandwidth of 40MHz, while targeting an effective resolution of 12-bit and a power consumption of less than 100mW
Zeller, Sebastian [Verfasser], Robert [Gutachter] Weigel, Christian [Gutachter] Münker, and Friedel [Gutachter] Gerfers. "Wide-Bandwidth Single-Bit Continuous-Time-Sigma-Delta-Modulation for Area- and Power-Efficient A/D Conversion with Low Jitter Sensitivity / Sebastian Zeller ; Gutachter: Robert Weigel, Christian Münker, Friedel Gerfers." Erlangen : FAU University Press, 2017. http://d-nb.info/1149368713/34.
Full textLu, Cho-Ying. "Calibrated Continuous-Time Sigma-Delta Modulators." 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7914.
Full textPulincherry, Anurag. "A continuous time frequency translating delta Sigma Modulator." Thesis, 2002. http://hdl.handle.net/1957/30250.
Full textGraduation date: 2003
Chen, Po-Sheng, and 陳柏升. "Continuous-Time Delta-Sigma Modulator for Wireless Communication Application." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/11510817581099030852.
Full text淡江大學
電機工程學系碩士班
98
With wireless networks and portable electronic products popularized in recent years, the goals of analog-to-digital converter (ADC) are gradually moving into the trend of high bandwidth, high resolution, and low power consumption. To contrast continuous-time (CT) architecture with discrete-time (DT) architecture, the CT architecture consumes less power than that of the DT architecture. Due to the complex derivation of mathematics, it is difficult to design a proper CT architecture. With the evolution of VLSI process technology, both the lower supply voltage and leakage current increase the difficulties of analog circuit design. This thesis tries to simplify the structure of CT ADC and analog part complexity of the design. We present a new architecture of CT analog-to-digital delta sigma modulator (DSM) in this thesis. Differing from the traditional method to design a CT DSM from the DT DSM needs to increase analog compensation paths or re-design the digital filters, the new approach uses digital filters to replace the analog compensation paths without re-designing digital filters. The new method simplifies the design procedural and induces the analog circuit complexity. This research tries to design a CT DSM for GSM / WCDMA / WiMAX applications. When operating at low speed mode, it will shut down the part of the circuit to save power. The circuit is designed by the TSMC 90nm 1p9m standard process; the supply voltage is 1.2V; bandwidths are 100k/2M/10M Hz; sampling frequencies are 40M/160M/320M Hz; oversampling rates(OSR) are 200/40/16. The greatest signal to noise distortion ratio are 85/70/61 dB, and the power consumptions are 4/6.4/15 mW(pre-simulations). In the implementation and post-simulations, because of the problems of RC-variation must be additional adjustments capacitors, the chip size and cost will increase, we only present WiMAX specifications.
Liu, Jun-hong, and 劉俊宏. "Low-Power Continuous-Time Sigma-Delta Modulator for GSM." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/34006394311059440138.
Full text國立中山大學
電機工程學系研究所
100
Continuous-time sigma-delta modulator can be applied to wireless communications, photography and MP3 player. Portable electronics products became mainstream the design of a low power consumption analog circuit become important. Therefore, this paper presents a low power consumption continuous-time sigma-delta modulator. The low-power continuous-time sigma-delta modulator includes one-bit quantizer and a third-order loop filter consisting of resistor-capacitor integrators. Through the modified Z-transform, the discrete time loop filter design is transformed to the continuous time loop filter design. The proposed sigma-delta modulator used TSMC 0.18μm CMOS 1P6M standard process, and its supply voltage is 1V, oversampling ratio is 32, bandwidth is 200 KHz, effective number is 13bit, power consumption is 1.5mW. Keywords: GSM, low power consumption, low power supply, continuous-time, sigma-delta modulator.
Yu-Chen, Sung. "Design of Continuous-Time Delta-Sigma Modulator for WCDMA Application." 2004. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0002-1407200501290000.
Full textKang, Ruei-Gen, and 康瑞根. "Third Order Continuous-Time Sigma-Delta Modulator with 1.5bit Quantizer." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/75534283238990354555.
Full text國立中山大學
電機工程學系研究所
100
The thesis proposes a third order continuous-time sigma delta modulator used in GSM. We used a special 1.5bit quantizer, and to use its three different states to reach a differential feedback path. That can improve the resolution of our circuit. Oversampling and noise shaping are two keys of sigma delta modulator. In structure, the continuous-time features can reduce power consumption. The proposed sigma delta modulator uses TSMC 0.35 m CMOS process and its sampling frequency is 10.8MHz, bandwidth is200KHz and oversampling ratio is 32.
Sung, Yu-Chen, and 宋育誠. "Design of Continuous-Time Delta-Sigma Modulator for WCDMA Application." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/25786057334637711160.
Full text淡江大學
電機工程學系碩士班
93
The 3rd generation mobile communications standard (WCDMA), based on a wideband code division multiple access (W-CDMA) modulation scheme, will be available in the commercial market. The use of spread spectrum techniques requires high-speed baseband circuits (few MHz) with a moderate dynamic range (10~12 bit). A basic building block of such a WCDMA receiver is an analog-to-digital converter. Over-sampling and sigma-delta modulation techniques are used in the analog to digital conversion interface of modern very large scaled integrated circuits. Unlike Nyquist rate A/D converters, which need high-precision building blocks, A/D converters show low sensitivity to circuit imperfections. This technique is then well-suited for standard low-cost CMOS technologies dedicated to digital VLSI circuits. The recent high demand for wideband, high resolution A/D converters for telecommunication applications requires very high sampling frequencies. The continuously decreasing supply voltage of recent CMOS technologies is causing important limitations to the performances of SC circuits. High switch resistance limits the signal dynamic range and limits the sampling frequency. Some circuit techniques, like bootstrapping switch and switched-opamp, have been developed to overcome this problem. These techniques are rather complex and still limit the sampling frequency. Continuous-time (CT) circuits do not suffer from these limitations and are therefore capable of achieving higher performances in recent low-voltage CMOS processes. Input-signal sampling errors, like settling-time errors and charge injection, are other discrete-time (DT) problems that do not exist in CT circuits. In this thesis, we try to design a continuous-time low-pass sigma-delta modulator suitable for WCDMA application. The impulse time invariant transformation is used to transfer the discrete time filter transfer function to the continuous-time filter transfer function. The continuous-time modulator uses Active-RC Integrators circuits to fulfill the implementation. Our circuit architecture is with single-loop, and the multibit nonreturn-to-zero (NRZ) DAC pulse shaping is used to reduce clock jitter sensitivities. The operating voltage of our proposed low-pass sigma-delta modulators for WCDMA receiver application is 1.8V;the sampling frequency is 52MHz, and the oversampling ratio is 13. The simulation results show that the bandwidth is 2MHz;the sampling frequency is 52MHz;the dynamic input range is 75dB, and the maximum signal to noise ratio is 72 dB. Its input signal is 0.45V;the effective resolution is 12bits, and the total power dissipation is 6mW.
wu, kuo-hsi, and 吳國璽. "Implementation of the continuous-time transconductor-capacitor Delta-Sigma modulator." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/6rkp74.
Full text國立交通大學
電信工程系所
96
Because of the rapid growth of wireless communication, there has been more focus on analog-to-discrete converter (ADC) for wireless communication. Since the frequency is usually narrow-band in general wireless communication, in order to reduce the complexity of the architecture, we usually require the ADC has the ability of in-band anti-noise. Besides, it is important the ADC operates in low voltage, low-power, and small area. The delta-sigma (ΔΣ) ADC is very suitable for the application because they can achieve high accuracy for narrow band signals with few analog components and insensitivity to process and component variation. Typically, there are two kinds of ΔΣ ADCs. The first one is the discrete-time (DT) ΔΣ ADC and the other is the continuous-time (CT) ΔΣ ADC. The DT ΔΣ ADC also called the switched-capacitor (SC) ΔΣ ADC because of using switched capacitors. The CT ΔΣ ADC obtains lots of attentions lately. Because the requirement of integrator is relaxed, it does not need to process signals within a clock time. This results in further power reduction. In order to combine the advantages of the CT ΔΣ ADC system into low-power communication system, this research focuses on low power 20MS/s sample frequency 3-rd order zero optimization CT GM-C ΔΣ ADC for GSM communication system. The chip has been fabricated by TSMC 0.18-um CMOS process. The measured peak SNDR is 45dB, SNR is 47.8dB and the DR is 49dB. The resolution is 7.2 bits that is 4 bits lower than prediction in 200k HZ signal band.
Periasamy, Vijayaramalingam. "System Design of a Wide Bandwidth Continuous-Time Sigma-Delta Modulator." Thesis, 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7989.
Full textSun, Jin Tin, and 孫京庭. "A SECOND-ORDER THREE-BIT CONTINUOUS-TIME WIDEBAND DELTA-SIGMA MODULATOR." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/35499828160484656950.
Full text大同大學
電機工程學系(所)
101
We present a three-bit continuous-time delta sigma modulator. The clock frequency is 320 MHz and the signal bandwidth is 10MHz, producing an oversampling rate of 16. In This work achieves second-order noise shaping by using Gm-C integrator. Eight comparators are used in the quantizer to achieve 3-bits resolution and two groups of DAC-current outputs feedback the signal form quantizater to Gm-C transconductor. This work requires a single 1.8-V supply, oversampling ratio 16, and bandwidth 10MHz. The Hspice simulation at -6.9dBFS intput shows a peak, signal-to-noise ratio of 49.21dB and the power consumption is 5mW.
Chien, Cheng-Ming. "Design of a Wide Bandwidth Continuous-time Low-pass Sigma-delta Modulator." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10690.
Full textChu, Hung-Yuan, and 瞿鴻遠. "Design Methodology and Verification of a Continuous-Time Bandpass Delta-Sigma Modulator." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/21214096656339513926.
Full text國立成功大學
電機工程學系碩博士班
95
In the design flow of circuits, building the behavior models is very important. The behavior of the system can be simulated and the result can be verified in a short time by using a higher level platform and the simpler user interface. Designing the circuit after confirming the simulation results of a behavior model helps the designers avoid making too many mistakes. From the searched literatures for the design of CT BP delta-sigma modulator, we found that some of them only focused on building a behavior model and others focused only on the circuit implementation. Almost none was found to consider both the behavior model and the physical implementation at the same time. Hence, we develop a top-down design flow using Simulink and Verilog-A for it to facilitate the design work. This paper presents a design methodology of a continuous-time(CT) Band-pass(BP) delta-sigma modulator which can simplify the design procedure. The models were built in SIMULINK and Cadence’ s Spectre environment. Finally, the flow is used in the design of a CT BP delta-sigma modulator which is applied to a WCDMA communication system. The center frequency of this modulator is at 100MHz and the internal quantizer operated at 400MHz clock frequency. The modulator is simulated in TSMC 0.35μm CMOS technology, at a supply voltage of 3.3V. The maximum SNR is 38.6dB for a 3.84MHz bandwidth, which corresponds to a resolution of 6 bits.