Academic literature on the topic 'Continuous time Markov chain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Continuous time Markov chain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Continuous time Markov chain"
Lekgari, Mokaedi V. "Maximal Coupling Procedure and Stability of Continuous-Time Markov Chains." Bulletin of Mathematical Sciences and Applications 10 (November 2014): 30–37. http://dx.doi.org/10.18052/www.scipress.com/bmsa.10.30.
Full textEriksson, B., and M. R. Pistorius. "American Option Valuation under Continuous-Time Markov Chains." Advances in Applied Probability 47, no. 2 (June 2015): 378–401. http://dx.doi.org/10.1239/aap/1435236980.
Full textEriksson, B., and M. R. Pistorius. "American Option Valuation under Continuous-Time Markov Chains." Advances in Applied Probability 47, no. 02 (June 2015): 378–401. http://dx.doi.org/10.1017/s0001867800007904.
Full textYap, V. B. "Similar States in Continuous-Time Markov Chains." Journal of Applied Probability 46, no. 2 (June 2009): 497–506. http://dx.doi.org/10.1239/jap/1245676102.
Full textYap, V. B. "Similar States in Continuous-Time Markov Chains." Journal of Applied Probability 46, no. 02 (June 2009): 497–506. http://dx.doi.org/10.1017/s002190020000560x.
Full textKijima, Masaaki. "Hazard rate and reversed hazard rate monotonicities in continuous-time Markov chains." Journal of Applied Probability 35, no. 3 (September 1998): 545–56. http://dx.doi.org/10.1239/jap/1032265203.
Full textKijima, Masaaki. "Hazard rate and reversed hazard rate monotonicities in continuous-time Markov chains." Journal of Applied Probability 35, no. 03 (September 1998): 545–56. http://dx.doi.org/10.1017/s002190020001620x.
Full textBall, Frank, and Geoffrey F. Yeo. "Lumpability and marginalisability for continuous-time Markov chains." Journal of Applied Probability 30, no. 3 (September 1993): 518–28. http://dx.doi.org/10.2307/3214762.
Full textRydén, Tobias. "On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions." Journal of Applied Probability 33, no. 3 (September 1996): 640–53. http://dx.doi.org/10.2307/3215346.
Full textRydén, Tobias. "On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions." Journal of Applied Probability 33, no. 03 (September 1996): 640–53. http://dx.doi.org/10.1017/s0021900200100087.
Full textDissertations / Theses on the topic "Continuous time Markov chain"
Rao, V. A. P. "Markov chain Monte Carlo for continuous-time discrete-state systems." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1349490/.
Full textAlharbi, Randa. "Bayesian inference for continuous time Markov chains." Thesis, University of Glasgow, 2019. http://theses.gla.ac.uk/40972/.
Full textWitte, Hugh Douglas. "Markov chain Monte Carlo and data augmentation methods for continuous-time stochastic volatility models." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283976.
Full textDai, Pra Paolo, Pierre-Yves Louis, and Ida Minelli. "Monotonicity and complete monotonicity for continuous-time Markov chains." Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2006/766/.
Full textHowever, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuous time but not in discrete-time.
Nous étudions les notions de monotonie et de monotonie complète pour les processus de Markov (ou chaînes de Markov à temps continu) prenant leurs valeurs dans un espace partiellement ordonné. Ces deux notions ne sont pas équivalentes, comme c'est le cas lorsque le temps est discret. Cependant, nous établissons que pour certains ensembles partiellement ordonnés, l'équivalence a lieu en temps continu bien que n'étant pas vraie en temps discret.
Keller, Peter, Sylvie Roelly, and Angelo Valleriani. "On time duality for quasi-birth-and-death processes." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5697/.
Full textAyana, Haimanot, and Sarah Al-Swej. "A review of two financial market models: the Black--Scholes--Merton and the Continuous-time Markov chain models." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55417.
Full textLo, Chia Chun. "Application of continuous time Markov chain models : option pricing, term structure of interest rates and stochastic filtering." Thesis, University of Essex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496255.
Full textSokolović, Sonja [Verfasser]. "Multigrid methods for highdimensional, tensor structured continuous time Markov chains / Sonja Sokolović." Wuppertal : Universitätsbibliothek Wuppertal, 2017. http://d-nb.info/1135623945/34.
Full textLevin, Pavel. "Computing Most Probable Sequences of State Transitions in Continuous-time Markov Systems." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22918.
Full textPopp, Anton [Verfasser], and N. [Akademischer Betreuer] Bäuerle. "Risk-Sensitive Stopping Problems for Continuous-Time Markov Chains / Anton Popp. Betreuer: N. Bäuerle." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1110969678/34.
Full textBooks on the topic "Continuous time Markov chain"
Anderson, William J. Continuous-Time Markov Chains. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3038-0.
Full textYin, G. George, and Qing Zhang. Continuous-Time Markov Chains and Applications. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0627-9.
Full textYin, G. George, and Qing Zhang. Continuous-Time Markov Chains and Applications. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4346-9.
Full textJ, Anderson William. Continuous-time Markov chains: An applications-oriented approach. New York: Springer-Verlag, 1991.
Find full textJ, Anderson William. Continuous-time Markov chains: An applications-oriented approach. New York: Springer-Verlag, 1991.
Find full textYin, George. Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach. 2nd ed. New York, NY: Springer New York, 2013.
Find full textYin, George. Continuous-time Markov chains and applications: A singular perturbation approach. New York: Springer, 1998.
Find full textYin, G. George. Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach. New York, NY: Springer New York, 1998.
Find full textGuo, Xianping, and Onésimo Hernández-Lerma. Continuous-Time Markov Decision Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02547-1.
Full textPiunovskiy, Alexey, and Yi Zhang. Continuous-Time Markov Decision Processes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54987-9.
Full textBook chapters on the topic "Continuous time Markov chain"
Romero, Paulo, and Martins Maciel. "Continuous Time Markov Chain." In Performance, Reliability, and Availability Evaluation of Computational Systems, Volume I, 439–524. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003306016-10.
Full textBrémaud, Pierre. "Continuous-Time Markov Models." In Markov Chains, 323–68. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3124-8_8.
Full textSericola, Bruno. "Continuous-Time Markov Chains." In Markov Chains, 89–190. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118731543.ch2.
Full textPrivault, Nicolas. "Continuous-Time Markov Chains." In Springer Undergraduate Mathematics Series, 211–62. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0659-4_9.
Full textIannelli, Mimmo, and Andrea Pugliese. "Continuous-time Markov chains." In UNITEXT, 329–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03026-5_13.
Full textKijima, Masaaki. "Continuous-time Markov chains." In Markov Processes for Stochastic Modeling, 167–241. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-3132-0_4.
Full textBosq, Denis, and Hung T. Nguyen. "Continuous — Time Markov Chains." In A Course in Stochastic Processes, 95–116. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8769-3_5.
Full textSerfozo, Richard. "Continuous-Time Markov Chains." In Probability and Its Applications, 241–340. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89332-5_4.
Full textMailund, Thomas. "Continuous-Time Markov Chains." In Domain-Specific Languages in R, 167–82. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3588-1_10.
Full textGuttorp, Peter. "Continuous time Markov chains." In Stochastic Modeling of Scientific Data, 125–88. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4449-8_3.
Full textConference papers on the topic "Continuous time Markov chain"
Li, Zhizhong, and Dahua Lin. "Integrating Specialized Classifiers Based on Continuous Time Markov Chain." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/312.
Full textOumaima, El Joubari, Ben Othman Jalel, and Veque Veronique. "Continuous Time Markov Chain Traffic Model for Urban Environments." In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, 2020. http://dx.doi.org/10.1109/globecom42002.2020.9348256.
Full textTao Yang, Prashant G. Mehta, and Sean P. Meyn. "Feedback particle filter for a continuous-time Markov chain." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580903.
Full textLi, Yu-Dun, Yun-Tao Sun, Chao Yang, Xin Wang, and Guo-Hui Zhang. "Modeling Wind Speed Time Series Using Continuous State Markov Chain." In International Conference on New Energy and Sustainable Development (NESD 2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813142589_0013.
Full textGaldino, Sergio. "Interval Continuous-Time Markov Chains simulation." In 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY). IEEE, 2013. http://dx.doi.org/10.1109/ifuzzy.2013.6825449.
Full textNing, Gaorong, Kishor S. Trivedi, Hai Hu, and Kai-Yuan Cai. "Multi-granularity Software Rejuvenation Policy Based on Continuous Time Markov Chain." In 2011 IEEE Third International Workshop on Software Aging and Rejuvenation (WoSAR). IEEE, 2011. http://dx.doi.org/10.1109/wosar.2011.9.
Full textFarooq, Hasan, Md Salik Parwez, and Ali Imran. "Continuous Time Markov Chain Based Reliability Analysis for Future Cellular Networks." In GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2014. http://dx.doi.org/10.1109/glocom.2014.7417594.
Full textFarooq, Hasan, Md Salik Parwez, and Ali Imran. "Continuous Time Markov Chain Based Reliability Analysis for Future Cellular Networks." In GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2015. http://dx.doi.org/10.1109/glocom.2015.7417594.
Full textLei, Tao, Shan Jiang, Xiangming Wen, Zhaoming Lu, and Lingchao Guo. "Throughput Analysis of Dense WLANs Using Continuous-Time Markov Chain Model." In 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017. http://dx.doi.org/10.1109/glocomw.2017.8269198.
Full textBortolussi, Luca. "Hybrid Limits of Continuous Time Markov Chains." In 2011 Eighth International Conference on Quantitative Evaluation of Systems (QEST). IEEE, 2011. http://dx.doi.org/10.1109/qest.2011.10.
Full textReports on the topic "Continuous time Markov chain"
Cucuringu, Mihai, and Radek Erban. ADM-CLE Approach for Detecting Slow Variables in Continuous Time Markov Chains and Dynamic Data. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada626542.
Full textHansen, Lars Peter, and Jose Alexandre Scheinkman. Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes. Cambridge, MA: National Bureau of Economic Research, September 1993. http://dx.doi.org/10.3386/t0141.
Full textStettner, Lukasz. On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada174758.
Full textChejanovsky, Nor, Diana Cox-Foster, Victoria Soroker, and Ron Ophir. Honeybee modulation of infection with the Israeli acute paralysis virus, in asymptomatic, acutely infected and CCD colonies. United States Department of Agriculture, December 2013. http://dx.doi.org/10.32747/2013.7594392.bard.
Full textPayment Systems Report - June of 2021. Banco de la República, February 2022. http://dx.doi.org/10.32468/rept-sist-pag.eng.2021.
Full textMonetary Policy Report - July 2022. Banco de la República, October 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr3-2022.
Full text