Books on the topic 'Continuous time Markov chain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 books for your research on the topic 'Continuous time Markov chain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Anderson, William J. Continuous-Time Markov Chains. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3038-0.
Full textYin, G. George, and Qing Zhang. Continuous-Time Markov Chains and Applications. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0627-9.
Full textYin, G. George, and Qing Zhang. Continuous-Time Markov Chains and Applications. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4346-9.
Full textJ, Anderson William. Continuous-time Markov chains: An applications-oriented approach. Springer-Verlag, 1991.
Find full textJ, Anderson William. Continuous-time Markov chains: An applications-oriented approach. Springer-Verlag, 1991.
Find full textYin, George. Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach. 2nd ed. Springer New York, 2013.
Find full textYin, George. Continuous-time Markov chains and applications: A singular perturbation approach. Springer, 1998.
Find full textYin, G. George. Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach. Springer New York, 1998.
Find full textGuo, Xianping, and Onésimo Hernández-Lerma. Continuous-Time Markov Decision Processes. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02547-1.
Full textPiunovskiy, Alexey, and Yi Zhang. Continuous-Time Markov Decision Processes. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54987-9.
Full textCosta, Oswaldo L. V., Marcelo D. Fragoso, and Marcos G. Todorov. Continuous-Time Markov Jump Linear Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34100-7.
Full textCosta, Oswaldo L. V. Continuous-Time Markov Jump Linear Systems. Springer Berlin Heidelberg, 2013.
Find full textContinuous time Markov processes: An introduction. American Mathematical Society, 2010.
Find full textLiggett, Thomas M. Continuous time Markov processes: An introduction. American Mathematical Society, 2010.
Find full textHernández-Lerma, O. Lectures on continuous-time Markov control processes. Sociedad Matemática Mexicana, 1994.
Find full textBanjevic, Dragan. Recurrent relations for distribution of waiting time in Markov chain. University of Toronto, Department of Statistics, 1994.
Find full textRoberts, Gareth O. Quantitative bounds for convergence rates of continuous time Markov processes. University of Toronto, Dept. of Statistics, 1996.
Find full textKushner, Harold J. Numerical methods for stochastic control problems in continuous time. Springer-Verlag, 1992.
Find full textKushner, Harold J. Numerical methods for stochastic control problems in continuous time. 2nd ed. Springer, 2001.
Find full textVladas, Sidoravicius, and Smirnov S. (Stanislav) 1970-, eds. Probability and statistical physics in St. Petersburg: St. Petersburg School in Probability and Statistical Physics : June 18-29, 2012 : St. Petersburg State University, St. Petersburg, Russia. American Mathematical Society, 2015.
Find full textJ, Anderson William. Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer, 2014.
Find full textJ, Anderson William. Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer, 2011.
Find full textJ, Anderson William. Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer London, Limited, 2012.
Find full textZhang, Qing, and G. George Yin. Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach. Springer New York, 2014.
Find full textZhang, Qing, and G. George Yin. Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach. Springer, 2012.
Find full textContinuous-Time Markov Chains and Applications: A Singular Perturbation Approach. Springer, 2011.
Find full textZhang, Qing, and George G. Yin. Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach (Stochastic Modelling and Applied Probability). Springer, 1997.
Find full textBack, Kerry E. Learning. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0023.
Full textOswaldo Luiz do Valle Costa, Marcelo D. Fragoso, and Marcos G. Todorov. Continuous-Time Markov Jump Linear Systems. Springer, 2015.
Find full textOswaldo Luiz do Valle Costa, Marcelo D. Fragoso, and Marcos G. Todorov. Continuous-Time Markov Jump Linear Systems. Springer, 2012.
Find full textHernandez-Lerma, Onesimo, and Xianping Guo. Continuous-Time Markov Decision Processes: Theory and Applications. Springer, 2010.
Find full textHernández-Lerma, Onésimo, and Xianping Guo. Continuous-Time Markov Decision Processes: Theory and Applications. Springer, 2012.
Find full textKushner, Harold J., and Paul Dupuis. Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, 2013.
Find full textBack, Kerry E. Continuous-Time Markets. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0013.
Full textZhang, Yi, Alexey Piunovskiy, and Albert Nikolaevich Shiryaev. Continuous-Time Markov Decision Processes: Borel Space Models and General Control Strategies. Springer International Publishing AG, 2021.
Find full textZhang, Yi, Alexey Piunovskiy, and Albert Nikolaevich Shiryaev. Continuous-Time Markov Decision Processes: Borel Space Models and General Control Strategies. Springer International Publishing AG, 2020.
Find full textBosch, Mariano, and William Maloney. Labor Market Dynamics In Developing Countries: Comparative Analysis Using Continuous Time Markov Processes. The World Bank, 2005. http://dx.doi.org/10.1596/1813-9450-3583.
Full textHernandez-Lerma, Onesimo, and Xianping Guo. Continuous-Time Markov Decision Processes: Theory and Applications (Stochastic Modelling and Applied Probability Book 62). Springer, 2009.
Find full textBao, Yun, Carl Chiarella, and Boda Kang. Particle Filters for Markov-Switching Stochastic Volatility Models. Edited by Shu-Heng Chen, Mak Kaboudan, and Ye-Rong Du. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199844371.013.9.
Full textBoudreau, Joseph F., and Eric S. Swanson. Monte Carlo methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0007.
Full textGeweke, John, Gary Koop, and Herman Van Dijk, eds. The Oxford Handbook of Bayesian Econometrics. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199559084.001.0001.
Full textHenderson, Daniel A., R. J. Boys, Carole J. Proctor, and Darren J. Wilkinson. Linking systems biology models to data: A stochastic kinetic model of p53 oscillations. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.7.
Full textQuintana, José Mario, Carlos Carvalho, James Scott, and Thomas Costigliola. Extracting S&P500 and NASDAQ Volatility: The Credit Crisis of 2007–2008. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.13.
Full textMartin, Andrew D. Bayesian Analysis. Edited by Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0021.
Full textDelsol, Laurent. Nonparametric Methods for α-Mixing Functional Random Variables. Редактори Frédéric Ferraty та Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.5.
Full textLaver, Michael, and Ernest Sergenti. Systematically Interrogating Agent-Based Models. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691139036.003.0004.
Full text