Journal articles on the topic 'Continuous time Markov chain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Continuous time Markov chain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lekgari, Mokaedi V. "Maximal Coupling Procedure and Stability of Continuous-Time Markov Chains." Bulletin of Mathematical Sciences and Applications 10 (November 2014): 30–37. http://dx.doi.org/10.18052/www.scipress.com/bmsa.10.30.
Full textEriksson, B., and M. R. Pistorius. "American Option Valuation under Continuous-Time Markov Chains." Advances in Applied Probability 47, no. 2 (June 2015): 378–401. http://dx.doi.org/10.1239/aap/1435236980.
Full textEriksson, B., and M. R. Pistorius. "American Option Valuation under Continuous-Time Markov Chains." Advances in Applied Probability 47, no. 02 (June 2015): 378–401. http://dx.doi.org/10.1017/s0001867800007904.
Full textYap, V. B. "Similar States in Continuous-Time Markov Chains." Journal of Applied Probability 46, no. 2 (June 2009): 497–506. http://dx.doi.org/10.1239/jap/1245676102.
Full textYap, V. B. "Similar States in Continuous-Time Markov Chains." Journal of Applied Probability 46, no. 02 (June 2009): 497–506. http://dx.doi.org/10.1017/s002190020000560x.
Full textKijima, Masaaki. "Hazard rate and reversed hazard rate monotonicities in continuous-time Markov chains." Journal of Applied Probability 35, no. 3 (September 1998): 545–56. http://dx.doi.org/10.1239/jap/1032265203.
Full textKijima, Masaaki. "Hazard rate and reversed hazard rate monotonicities in continuous-time Markov chains." Journal of Applied Probability 35, no. 03 (September 1998): 545–56. http://dx.doi.org/10.1017/s002190020001620x.
Full textBall, Frank, and Geoffrey F. Yeo. "Lumpability and marginalisability for continuous-time Markov chains." Journal of Applied Probability 30, no. 3 (September 1993): 518–28. http://dx.doi.org/10.2307/3214762.
Full textRydén, Tobias. "On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions." Journal of Applied Probability 33, no. 3 (September 1996): 640–53. http://dx.doi.org/10.2307/3215346.
Full textRydén, Tobias. "On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions." Journal of Applied Probability 33, no. 03 (September 1996): 640–53. http://dx.doi.org/10.1017/s0021900200100087.
Full textBall, Frank, and Geoffrey F. Yeo. "Lumpability and marginalisability for continuous-time Markov chains." Journal of Applied Probability 30, no. 03 (September 1993): 518–28. http://dx.doi.org/10.1017/s0021900200044272.
Full textCoolen-Schrijner, Pauline, Andrew Hart, and Phil Pollett. "Quasistationarity of continuous-time Markov chains with positive drift." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 41, no. 4 (April 2000): 423–41. http://dx.doi.org/10.1017/s0334270000011735.
Full textElliott, Robert J., and John van der Hoek. "Default Times in a Continuous Time Markov Chain Economy." Applied Mathematical Finance 20, no. 5 (November 2013): 450–60. http://dx.doi.org/10.1080/1350486x.2012.755825.
Full textEsquível, Manuel L., Nadezhda P. Krasii, and Gracinda R. Guerreiro. "Open Markov Type Population Models: From Discrete to Continuous Time." Mathematics 9, no. 13 (June 25, 2021): 1496. http://dx.doi.org/10.3390/math9131496.
Full textFill, James Allen. "Time to Stationarity for a Continuous-Time Markov Chain." Probability in the Engineering and Informational Sciences 5, no. 1 (January 1991): 61–76. http://dx.doi.org/10.1017/s0269964800001893.
Full textZhao, Pan. "Strong Stationary Duality and Algebraic Duality for Continuous Time Möbius Monotone Markov Chains." International Journal of Applied Mathematics and Machine Learning 15, no. 2 (December 5, 2021): 69–86. http://dx.doi.org/10.18642/ijamml_710012241.
Full textRoss, Sheldon M. "A Note on Approximating Mean Occupation Times of Continuous-Time Markov Chains." Probability in the Engineering and Informational Sciences 2, no. 2 (April 1988): 267–68. http://dx.doi.org/10.1017/s0269964800000796.
Full textGeweke, John, Robert C. Marshall, and Gary A. Zarkin. "Exact Inference for Continuous Time Markov Chain Models." Review of Economic Studies 53, no. 4 (August 1986): 653. http://dx.doi.org/10.2307/2297610.
Full textZHANG, Wei-feng, Xia LIU, Ying-zhou ZHANG, and Guo-qiang ZHOU. "Continuous time Markov chain based website navigability measure." Journal of China Universities of Posts and Telecommunications 18, no. 2 (April 2011): 45–52. http://dx.doi.org/10.1016/s1005-8885(10)60043-x.
Full textCoolen-Schrijner, Pauline, and Erik A. van Doorn. "THE DEVIATION MATRIX OF A CONTINUOUS-TIME MARKOV CHAIN." Probability in the Engineering and Informational Sciences 16, no. 3 (May 22, 2002): 351–66. http://dx.doi.org/10.1017/s0269964802163066.
Full textMarwa, Yohana Maiga, Isambi Sailon Mbalawata, and Samuel Mwalili. "Continuous Time Markov Chain Model for Cholera Epidemic Transmission Dynamics." International Journal of Statistics and Probability 8, no. 3 (April 18, 2019): 32. http://dx.doi.org/10.5539/ijsp.v8n3p32.
Full textXiang, Xuyan, Xiao Zhang, and Xiaoyun Mo. "Statistical Identification of Markov Chain on Trees." Mathematical Problems in Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/2036248.
Full textKijima, Masaaki. "Quasi-limiting distributions of Markov chains that are skip-free to the left in continuous time." Journal of Applied Probability 30, no. 3 (September 1993): 509–17. http://dx.doi.org/10.2307/3214761.
Full textKijima, Masaaki. "Quasi-limiting distributions of Markov chains that are skip-free to the left in continuous time." Journal of Applied Probability 30, no. 03 (September 1993): 509–17. http://dx.doi.org/10.1017/s0021900200044260.
Full textKrak, Thomas, Jasper De Bock, and Arno Siebes. "Imprecise continuous-time Markov chains." International Journal of Approximate Reasoning 88 (September 2017): 452–528. http://dx.doi.org/10.1016/j.ijar.2017.06.012.
Full textGuo, Xianping, and Onésimo Hernández-Lerma. "Continuous-time controlled Markov chains." Annals of Applied Probability 13, no. 1 (2003): 363–88. http://dx.doi.org/10.1214/aoap/1042765671.
Full textSuchard, Marc A., Robert E. Weiss, and Janet S. Sinsheimer. "Bayesian Selection of Continuous-Time Markov Chain Evolutionary Models." Molecular Biology and Evolution 18, no. 6 (June 1, 2001): 1001–13. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003872.
Full textHuo, Yunzhang, and Ping Ji. "Continuous-Time Markov Chain–Based Flux Analysis in Metabolism." Journal of Computational Biology 21, no. 9 (September 2014): 691–98. http://dx.doi.org/10.1089/cmb.2014.0073.
Full textLe, Hung V., and M. J. Tsatsomeros. "Matrix Analysis for Continuous-Time Markov Chains." Special Matrices 10, no. 1 (January 1, 2021): 219–33. http://dx.doi.org/10.1515/spma-2021-0157.
Full textKijima, Masaaki. "On passage and conditional passage times for Markov chains in continuous time." Journal of Applied Probability 25, no. 2 (June 1988): 279–90. http://dx.doi.org/10.2307/3214436.
Full textKijima, Masaaki. "On passage and conditional passage times for Markov chains in continuous time." Journal of Applied Probability 25, no. 02 (June 1988): 279–90. http://dx.doi.org/10.1017/s0021900200040924.
Full textHahn, Markus, and Jörn Sass. "Parameter estimation in continuous time Markov switching models: a semi-continuous Markov chain Monte Carlo approach." Bayesian Analysis 4, no. 1 (March 2009): 63–84. http://dx.doi.org/10.1214/09-ba402.
Full textMiller, A. B., B. M. Miller, and K. V. Stepanyan. "Simultaneous Impulse and Continuous Control of a Markov Chain in Continuous Time." Automation and Remote Control 81, no. 3 (March 2020): 469–82. http://dx.doi.org/10.1134/s0005117920030066.
Full textNorberg, Ragnar. "The Markov Chain Market." ASTIN Bulletin 33, no. 02 (November 2003): 265–87. http://dx.doi.org/10.2143/ast.33.2.503693.
Full textNorberg, Ragnar. "The Markov Chain Market." ASTIN Bulletin 33, no. 2 (November 2003): 265–87. http://dx.doi.org/10.1017/s0515036100013465.
Full textSharma, Vinod. "Approximations of general discrete time queues by discrete time queues with arrivals modulated by finite chains." Advances in Applied Probability 29, no. 4 (December 1997): 1039–59. http://dx.doi.org/10.2307/1427853.
Full textSharma, Vinod. "Approximations of general discrete time queues by discrete time queues with arrivals modulated by finite chains." Advances in Applied Probability 29, no. 04 (December 1997): 1039–59. http://dx.doi.org/10.1017/s0001867800048011.
Full textBall, Frank, Robin K. Milne, Ian D. Tame, and Geoffrey F. Yeo. "Superposition of Interacting Aggregated Continuous-Time Markov Chains." Advances in Applied Probability 29, no. 1 (March 1997): 56–91. http://dx.doi.org/10.2307/1427861.
Full textBall, Frank, Robin K. Milne, Ian D. Tame, and Geoffrey F. Yeo. "Superposition of Interacting Aggregated Continuous-Time Markov Chains." Advances in Applied Probability 29, no. 01 (March 1997): 56–91. http://dx.doi.org/10.1017/s0001867800027798.
Full textPritchard, Geoffrey, and David J. Scott. "Empirical convergence rates for continuous-time Markov chains." Journal of Applied Probability 38, no. 1 (March 2001): 262–69. http://dx.doi.org/10.1239/jap/996986661.
Full textPritchard, Geoffrey, and David J. Scott. "Empirical convergence rates for continuous-time Markov chains." Journal of Applied Probability 38, no. 01 (March 2001): 262–69. http://dx.doi.org/10.1017/s0021900200018684.
Full textBöttcher, Björn. "Embedded Markov chain approximations in Skorokhod topologies." Probability and Mathematical Statistics 39, no. 2 (December 19, 2019): 259–77. http://dx.doi.org/10.19195/0208-4147.39.2.2.
Full textMagazev, A. A., A. S. Melnikova, and V. F. Tsyrulnik. "Evaluating mean time to security failure based on continuous-time Markov chains." Mathematical Structures and Modeling, no. 4 (56) (December 18, 2020): 112–25. http://dx.doi.org/10.24147/2222-8772.2020.4.112-125.
Full textBäuerle, Nicole, Igor Gilitschenski, and Uwe Hanebeck. "Exact and approximate hidden Markov chain filters based on discrete observations." Statistics & Risk Modeling 32, no. 3-4 (December 1, 2015): 159–76. http://dx.doi.org/10.1515/strm-2015-0004.
Full textAziz, Adnan, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. "Model-checking continuous-time Markov chains." ACM Transactions on Computational Logic 1, no. 1 (July 2000): 162–70. http://dx.doi.org/10.1145/343369.343402.
Full textPollett, P. K. "Integrals for continuous-time Markov chains." Mathematical Biosciences 182, no. 2 (April 2003): 213–25. http://dx.doi.org/10.1016/s0025-5564(02)00161-x.
Full textLi, Pei-Sen. "Perturbations of continuous-time Markov chains." Statistics & Probability Letters 125 (June 2017): 17–24. http://dx.doi.org/10.1016/j.spl.2017.01.018.
Full textJohnson, Jean T. "Continuous-time, constant causative Markov chains." Stochastic Processes and their Applications 26 (1987): 161–71. http://dx.doi.org/10.1016/0304-4149(87)90057-3.
Full textAggoun, L., L. Benkherouf, and L. Tadj. "Filtering of continuous-time Markov chains." Mathematical and Computer Modelling 26, no. 12 (December 1997): 73–83. http://dx.doi.org/10.1016/s0895-7177(97)00241-0.
Full textBurini, Diletta, Elena De Angelis, and Miroslaw Lachowicz. "A Continuous–Time Markov Chain Modeling Cancer–Immune System Interactions." Communications in Applied and Industrial Mathematics 9, no. 2 (December 1, 2018): 106–18. http://dx.doi.org/10.2478/caim-2018-0018.
Full text