Journal articles on the topic 'Continuous Time Random Walk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Continuous Time Random Walk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lin, Fang, and Jing-Dong Bao. "Environment-dependent continuous time random walk." Chinese Physics B 20, no. 4 (2011): 040502. http://dx.doi.org/10.1088/1674-1056/20/4/040502.
Full textWang, Wanli, Eli Barkai, and Stanislav Burov. "Large Deviations for Continuous Time Random Walks." Entropy 22, no. 6 (2020): 697. http://dx.doi.org/10.3390/e22060697.
Full textHwang, Kyo-Shin, and Wensheng Wang. "Chover-Type Laws of the Iterated Logarithm for Continuous Time Random Walks." Journal of Applied Mathematics 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/906373.
Full textMeerschaert, Mark M., and Hans-Peter Scheffler. "Limit theorems for continuous-time random walks with infinite mean waiting times." Journal of Applied Probability 41, no. 3 (2004): 623–38. http://dx.doi.org/10.1239/jap/1091543414.
Full textMeerschaert, Mark M., and Hans-Peter Scheffler. "Limit theorems for continuous-time random walks with infinite mean waiting times." Journal of Applied Probability 41, no. 03 (2004): 623–38. http://dx.doi.org/10.1017/s002190020002043x.
Full textAlemany, P. A., R. Vogel, I. M. Sokolov, and A. Blumen. "A dumbbell's random walk in continuous time." Journal of Physics A: Mathematical and General 27, no. 23 (1994): 7733–38. http://dx.doi.org/10.1088/0305-4470/27/23/016.
Full textSabhapandit, Sanjib. "Record statistics of continuous time random walk." EPL (Europhysics Letters) 94, no. 2 (2011): 20003. http://dx.doi.org/10.1209/0295-5075/94/20003.
Full textBecker-Kern, Peter, and Hans-Peter Scheffler. "On multiple-particle continuous-time random walks." Journal of Applied Mathematics 2004, no. 3 (2004): 213–33. http://dx.doi.org/10.1155/s1110757x04308065.
Full textLv, Longjin, Fu-Yao Ren, Jun Wang, and Jianbin Xiao. "Correlated continuous time random walk with time averaged waiting time." Physica A: Statistical Mechanics and its Applications 422 (March 2015): 101–6. http://dx.doi.org/10.1016/j.physa.2014.12.010.
Full textZhang, Caiyun, Yuhang Hu, and Jian Liu. "Correlated continuous-time random walk with stochastic resetting." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 9 (2022): 093205. http://dx.doi.org/10.1088/1742-5468/ac8c8e.
Full textBriozzo, Carlos B., Carlos E. Budde, and Manuel O. Cáceres. "Continuous-time random-walk model for superionic conductors." Physical Review A 39, no. 11 (1989): 6010–15. http://dx.doi.org/10.1103/physreva.39.6010.
Full textDenisov, S. I., and H. Kantz. "Continuous-time random walk theory of superslow diffusion." EPL (Europhysics Letters) 92, no. 3 (2010): 30001. http://dx.doi.org/10.1209/0295-5075/92/30001.
Full textLv, Longjin, Jianbin Xiao, Liangzhong Fan, and Fuyao Ren. "Correlated continuous time random walk and option pricing." Physica A: Statistical Mechanics and its Applications 447 (April 2016): 100–107. http://dx.doi.org/10.1016/j.physa.2015.12.013.
Full textJiang, Jianguo, and Jichun Wu. "Continuous time random walk in homogeneous porous media." Journal of Contaminant Hydrology 155 (December 2013): 82–86. http://dx.doi.org/10.1016/j.jconhyd.2013.08.006.
Full textDybiec, Bartłomiej, and Ewa Gudowska-Nowak. "Subordinated diffusion and continuous time random walk asymptotics." Chaos: An Interdisciplinary Journal of Nonlinear Science 20, no. 4 (2010): 043129. http://dx.doi.org/10.1063/1.3522761.
Full textSokolov, I. M., R. Vogel, P. A. Alemany, and A. Blumen. "Continuous-time random walk of a rigid triangle." Journal of Physics A: Mathematical and General 28, no. 23 (1995): 6645–53. http://dx.doi.org/10.1088/0305-4470/28/23/016.
Full textHilfer, R., and R. Orbach. "Continuous time random walk approach to dynamic percolation." Chemical Physics 128, no. 1 (1988): 275–87. http://dx.doi.org/10.1016/0301-0104(88)85076-6.
Full textFa, Kwok Sau, and R. S. Mendes. "A continuous time random walk model with multiple characteristic times." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 04 (2010): P04001. http://dx.doi.org/10.1088/1742-5468/2010/04/p04001.
Full textChisaki, Kota, Norio Konno, Etsuo Segawa, and Yutaka Shikano. "Crossovers induced by discrete-time quantum walks." Quantum Information and Computation 11, no. 9&10 (2011): 741–60. http://dx.doi.org/10.26421/qic11.9-10-2.
Full textRosenthal, Jeffrey S. "Random walks on discrete and continuous circles." Journal of Applied Probability 30, no. 4 (1993): 780–89. http://dx.doi.org/10.2307/3214512.
Full textRosenthal, Jeffrey S. "Random walks on discrete and continuous circles." Journal of Applied Probability 30, no. 04 (1993): 780–89. http://dx.doi.org/10.1017/s0021900200044569.
Full textWong, Thomas G. "Unstructured search by random and quantum walk." Quantum Information and Computation 22, no. 1&2 (2022): 53–85. http://dx.doi.org/10.26421/qic22.1-2-4.
Full textMichelitsch, Thomas M., Federico Polito, and Alejandro P. Riascos. "Biased Continuous-Time Random Walks with Mittag-Leffler Jumps." Fractal and Fractional 4, no. 4 (2020): 1–29. https://doi.org/10.3390/fractalfract4040051.
Full textPozzoli, Gaia, Mattia Radice, Manuele Onofri, and Roberto Artuso. "A Continuous-Time Random Walk Extension of the Gillis Model." Entropy 22, no. 12 (2020): 1431. http://dx.doi.org/10.3390/e22121431.
Full textKONNO, NORIO. "CONTINUOUS-TIME QUANTUM WALKS ON ULTRAMETRIC SPACES." International Journal of Quantum Information 04, no. 06 (2006): 1023–35. http://dx.doi.org/10.1142/s0219749906002389.
Full textOsmekhin, Sergey, and Fr ́ed ́eric D ́el`eze. "Application of continuous - time random walk to statistical arbitrage." Journal of Engineering Science and Technology Review 8, no. 1 (2015): 91–95. http://dx.doi.org/10.25103/jestr.81.16.
Full textBöhm, W., and W. Panny. "Simple random walk statistics. Part II: Continuous time results." Journal of Applied Probability 33, no. 2 (1996): 331–39. http://dx.doi.org/10.2307/3215057.
Full textBalescu, R. "Continuous time random walk model for standard map dynamics." Physical Review E 55, no. 3 (1997): 2465–74. http://dx.doi.org/10.1103/physreve.55.2465.
Full textBöhm, W., and W. Panny. "Simple random walk statistics. Part II: Continuous time results." Journal of Applied Probability 33, no. 02 (1996): 331–39. http://dx.doi.org/10.1017/s0021900200099757.
Full textSchumer, Rina, Boris Baeumer, and Mark M. Meerschaert. "Extremal behavior of a coupled continuous time random walk." Physica A: Statistical Mechanics and its Applications 390, no. 3 (2011): 505–11. http://dx.doi.org/10.1016/j.physa.2010.10.018.
Full textCastro, J., and J. Rivas. "A continuous time random walk approach to magnetic disaccommodation." Journal of Magnetism and Magnetic Materials 130, no. 1-3 (1994): 342–46. http://dx.doi.org/10.1016/0304-8853(94)90692-0.
Full textFA, KWOK SAU, and K. G. WANG. "INTEGRO-DIFFERENTIAL EQUATIONS ASSOCIATED WITH CONTINUOUS-TIME RANDOM WALK." International Journal of Modern Physics B 27, no. 12 (2013): 1330006. http://dx.doi.org/10.1142/s0217979213300065.
Full textEscaff, Daniel, Raúl Toral, Christian Van den Broeck, and Katja Lindenberg. "A continuous-time persistent random walk model for flocking." Chaos: An Interdisciplinary Journal of Nonlinear Science 28, no. 7 (2018): 075507. http://dx.doi.org/10.1063/1.5027734.
Full textMiyazaki, S., T. Harada, and A. Budiyono. "Continuous-Time Random Walk Approach to On-Off Diffusion." Progress of Theoretical Physics 106, no. 6 (2001): 1051–78. http://dx.doi.org/10.1143/ptp.106.1051.
Full textLiu, Jian, and Jing-Dong Bao. "Effective Jump Length of Coupled Continuous Time Random Walk." Chinese Physics Letters 30, no. 2 (2013): 020202. http://dx.doi.org/10.1088/0256-307x/30/2/020202.
Full textMasoliver, Jaume, Miquel Montero, Josep Perelló, and George H. Weiss. "The continuous time random walk formalism in financial markets." Journal of Economic Behavior & Organization 61, no. 4 (2006): 577–98. http://dx.doi.org/10.1016/j.jebo.2004.07.015.
Full textMasoliver, Jaume, Katja Lindenberg, and George H. Weiss. "A continuous-time generalization of the persistent random walk." Physica A: Statistical Mechanics and its Applications 157, no. 2 (1989): 891–98. http://dx.doi.org/10.1016/0378-4371(89)90071-x.
Full textFA, KWOK SAU. "CONTINUOUS-TIME FINANCE AND THE WAITING TIME DISTRIBUTION: MULTIPLE CHARACTERISTIC TIMES." Modern Physics Letters B 26, no. 23 (2012): 1250151. http://dx.doi.org/10.1142/s0217984912501515.
Full textRichter, Susanne, and Günter Vojta. "Generalized non-Markovian master equation for continuous time random walk with random flying times." Physica A: Statistical Mechanics and its Applications 188, no. 4 (1992): 631–43. http://dx.doi.org/10.1016/0378-4371(92)90335-n.
Full textLiu, Jian, Bao-He Li, and Xiao-Song Chen. "Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk." Chinese Physics Letters 34, no. 5 (2017): 050201. http://dx.doi.org/10.1088/0256-307x/34/5/050201.
Full textLiu, Jian, and Jing-Dong Bao. "Continuous time random walk with jump length correlated with waiting time." Physica A: Statistical Mechanics and its Applications 392, no. 4 (2013): 612–17. http://dx.doi.org/10.1016/j.physa.2012.10.019.
Full textMichelitsch, Thomas M., Federico Polito, and Alejandro P. Riascos. "Biased Continuous-Time Random Walks with Mittag-Leffler Jumps." Fractal and Fractional 4, no. 4 (2020): 51. http://dx.doi.org/10.3390/fractalfract4040051.
Full textAGLIARI, ELENA, OLIVER MÜLKEN, and ALEXANDER BLUMEN. "CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING." International Journal of Bifurcation and Chaos 20, no. 02 (2010): 271–79. http://dx.doi.org/10.1142/s0218127410025715.
Full textNicolau, João. "STATIONARY PROCESSES THAT LOOK LIKE RANDOM WALKS— THE BOUNDED RANDOM WALK PROCESS IN DISCRETE AND CONTINUOUS TIME." Econometric Theory 18, no. 1 (2002): 99–118. http://dx.doi.org/10.1017/s0266466602181060.
Full textLin Fang and Bao Jing-Dong. "Approach of continuous time random walk model to anomalous diffusion." Acta Physica Sinica 57, no. 2 (2008): 696. http://dx.doi.org/10.7498/aps.57.696.
Full textJohnson, Devin S., Joshua M. London, Mary-Anne Lea, and John W. Durban. "CONTINUOUS-TIME CORRELATED RANDOM WALK MODEL FOR ANIMAL TELEMETRY DATA." Ecology 89, no. 5 (2008): 1208–15. http://dx.doi.org/10.1890/07-1032.1.
Full textGubiec, T., and R. Kutner. "Share Price Evolution as Stationary, Dependent Continuous-Time Random Walk." Acta Physica Polonica A 117, no. 4 (2010): 669–72. http://dx.doi.org/10.12693/aphyspola.117.669.
Full textRodríguez-Romo, Suemi, and Vladimir Tchijov. "On Continuous-Time Self-Avoiding Random Walk in Dimension Four." Journal of Statistical Physics 90, no. 3-4 (1998): 767–81. http://dx.doi.org/10.1023/a:1023276920343.
Full textBarkai, E., and I. M. Sokolov. "Multi-point distribution function for the continuous time random walk." Journal of Statistical Mechanics: Theory and Experiment 2007, no. 08 (2007): P08001. http://dx.doi.org/10.1088/1742-5468/2007/08/p08001.
Full textNelson, Jenny. "Continuous-time random-walk model of electron transport in nanocrystallineTiO2electrodes." Physical Review B 59, no. 23 (1999): 15374–80. http://dx.doi.org/10.1103/physrevb.59.15374.
Full text