To see the other types of publications on this topic, follow the link: Continuum mechanics.

Journal articles on the topic 'Continuum mechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Continuum mechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu,, I.-Shih, and E. DeSantiago,. "Continuum Mechanics." Applied Mechanics Reviews 56, no. 3 (2003): B34—B35. http://dx.doi.org/10.1115/1.1566392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romano, Giovanni, Raffaele Barretta, and Marina Diaco. "Geometric continuum mechanics." Meccanica 49, no. 1 (2013): 111–33. http://dx.doi.org/10.1007/s11012-013-9777-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baranyai, Tamás. "Projective continuum mechanics." Comptes Rendus. Mécanique 353, G1 (2025): 615–26. https://doi.org/10.5802/crmeca.298.

Full text
Abstract:
The description of Cauchy stress and infinitesimal strain tensors is given, such that it is compatible with the homogeneous coordinate description of projective geometry. It is shown that neither material isotropy nor global material orthotropy are projective invariants thus the transformation of known solutions is useful only for statically determinate problems. As membrane shells are often statically determinate, they are identified as a potential area of application. The transformation of the graph of the Airy stress function is given in a point-wise projective three dimensional way, which
APA, Harvard, Vancouver, ISO, and other styles
4

Silbermann, C. B., and J. Ihlemann. "Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics." IOP Conference Series: Materials Science and Engineering 181 (March 2017): 012037. http://dx.doi.org/10.1088/1757-899x/181/1/012037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang-ji, Lu. "Micropolar continuum mechanics is more profound than classical continuum mechanics." Applied Mathematics and Mechanics 8, no. 10 (1987): 939–46. http://dx.doi.org/10.1007/bf02454256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molerus, O. "Fluid mechanics and continuum mechanics." Heat and Mass Transfer 44, no. 5 (2007): 625–33. http://dx.doi.org/10.1007/s00231-007-0284-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burr, A., F. Hild, and F. A. Leckie. "Micro-mechanics and continuum damage mechanics." Archive of Applied Mechanics 65, no. 7 (1995): 437–56. http://dx.doi.org/10.1007/bf00835656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Santaoja, Kari Juhani. "On continuum damage mechanics." Rakenteiden Mekaniikka 52, no. 3 (2019): 125–47. http://dx.doi.org/10.23998/rm.76025.

Full text
Abstract:
A material containing spherical microvoids with a Hookean matrix response was shown to take the appearance usually applied in continuum damage mechanics. However, the commonly used variable damage D was replaced with the void volume fraction f , which has a clear physical meaning, and the elastic strain tensor \Bold {ε}^e with the damage-elastic strain tensor \Bold {ε}^{de}. The postulate of strain equivalence with the effective stress concept was reformulated and applied to a case where the response of the matrix obeys Hooke’s law. In contrast to many other studies, in the derived relation be
APA, Harvard, Vancouver, ISO, and other styles
9

Pavelka, Michal, Ilya Peshkov, and Václav Klika. "On Hamiltonian continuum mechanics." Physica D: Nonlinear Phenomena 408 (July 2020): 132510. http://dx.doi.org/10.1016/j.physd.2020.132510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Besseling, J. F. "Mechanics and continuum thermodynamics." Archive of Applied Mechanics (Ingenieur Archiv) 70, no. 1-3 (2000): 115–26. http://dx.doi.org/10.1007/s004199900049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alfredsson, K. S., and U. Stigh. "Continuum damage mechanics revised." International Journal of Solids and Structures 41, no. 15 (2004): 4025–45. http://dx.doi.org/10.1016/j.ijsolstr.2004.02.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kum, Oyeon, and William G. Hoover. "Time-reversible continuum mechanics." Journal of Statistical Physics 76, no. 3-4 (1994): 1075–81. http://dx.doi.org/10.1007/bf02188699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Peshkov, Ilya, Evgeniy Romenski, and Michael Dumbser. "Continuum mechanics with torsion." Continuum Mechanics and Thermodynamics 31, no. 5 (2019): 1517–41. http://dx.doi.org/10.1007/s00161-019-00770-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ramkissoon, H. "Representations in Continuum Mechanics." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 1 (1986): 60–61. http://dx.doi.org/10.1002/zamm.19860660116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

KOTAKE, Shigeo. "Explanation of Mechanical Properties from Quantum Continuum Mechanics." Proceedings of the JSME annual meeting 2000.3 (2000): 355–56. http://dx.doi.org/10.1299/jsmemecjo.2000.3.0_355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Oller, Sergio, Omar Salomón, and Eugenio Oñate. "A continuum mechanics model for mechanical fatigue analysis." Computational Materials Science 32, no. 2 (2005): 175–95. http://dx.doi.org/10.1016/j.commatsci.2004.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sciammarella, Cesar A., Luciano Lamberti, and Federico M. Sciammarella. "Verification of Continuum Mechanics Predictions with Experimental Mechanics." Materials 13, no. 1 (2019): 77. http://dx.doi.org/10.3390/ma13010077.

Full text
Abstract:
The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents an experimental verification of the RVE concept. Foundations of continuum kinematics as well as mathematical functions relating displacement vectorial fields to the recording of these fields by a light sensor in the form of gray-level scalar fields are reviewed. The Eulerian derivat
APA, Harvard, Vancouver, ISO, and other styles
18

Howarth, J. A., and A. Bedford. "Hamilton's Principle in Continuum Mechanics." Mathematical Gazette 70, no. 454 (1986): 329. http://dx.doi.org/10.2307/3616226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Wei-qiu. "The renaissance of continuum mechanics." Journal of Zhejiang University SCIENCE A 15, no. 4 (2014): 231–40. http://dx.doi.org/10.1631/jzus.a1400079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Saanouni, K., and J. M. A. César De Sá. "Advances in Continuum Damage Mechanics." International Journal of Damage Mechanics 20, no. 4 (2011): 483. http://dx.doi.org/10.1177/1056789510395435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fosdick, Roger, and Huang Tang. "Surface Transport in Continuum Mechanics." Mathematics and Mechanics of Solids 14, no. 6 (2008): 587–98. http://dx.doi.org/10.1177/1081286507087316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Talpaert,, YR, and JG Simmonds,. "Tensor Analysis and Continuum Mechanics." Applied Mechanics Reviews 57, no. 1 (2004): B1. http://dx.doi.org/10.1115/1.1641771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bedford, A., and S. L. Passman. "Hamilton’s Principle in Continuum Mechanics." Journal of Applied Mechanics 53, no. 3 (1986): 731. http://dx.doi.org/10.1115/1.3171846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kachanov, L. M., and D. Krajcinovic. "Introduction to Continuum Damage Mechanics." Journal of Applied Mechanics 54, no. 2 (1987): 481. http://dx.doi.org/10.1115/1.3173053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Maugin, Gerard A., and A. C. Eringen. "Continuum Mechanics of Electromagnetic Solids." Journal of Applied Mechanics 56, no. 4 (1989): 986. http://dx.doi.org/10.1115/1.3176205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Béda, Gyula. "Constitutive Equations in Continuum Mechanics." International Applied Mechanics 39, no. 2 (2003): 123–31. http://dx.doi.org/10.1023/a:1023951829541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shariff, M. H. B. M. "Spectral Derivatives in Continuum Mechanics." Quarterly Journal of Mechanics and Applied Mathematics 70, no. 4 (2017): 479–96. http://dx.doi.org/10.1093/qjmam/hbx014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gould, Tim, Georg Jansen, I. V. Tokatly, and John F. Dobson. "Quantum continuum mechanics made simple." Journal of Chemical Physics 136, no. 20 (2012): 204115. http://dx.doi.org/10.1063/1.4721269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Graham, G. A. C., and S. K. Malik. "Continuum mechanics and its applications." International Journal of Plasticity 6, no. 5 (1990): 633. http://dx.doi.org/10.1016/0749-6419(90)90048-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Potapov, V. D. "Stability via nonlocal continuum mechanics." International Journal of Solids and Structures 50, no. 5 (2013): 637–41. http://dx.doi.org/10.1016/j.ijsolstr.2012.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tang, C. Y. "Anisotropy in continuum damage mechanics." Scripta Metallurgica et Materialia 29, no. 2 (1993): 183–88. http://dx.doi.org/10.1016/0956-716x(93)90305-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cherepanov, G. P. "Invariant integrals in continuum mechanics." Soviet Applied Mechanics 26, no. 7 (1990): 619–30. http://dx.doi.org/10.1007/bf00889398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barnaby, J. T. "Introduction to continuum damage mechanics." Materials & Design 8, no. 4 (1987): 242. http://dx.doi.org/10.1016/0261-3069(87)90152-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gollub, Jerry. "Continuum Mechanics in Physics Education." Physics Today 56, no. 12 (2003): 10–11. http://dx.doi.org/10.1063/1.1650202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

TOKUOKA, Tatsuo. "What is Rational Continuum Mechanics?" Journal of the Society of Mechanical Engineers 88, no. 796 (1985): 253–59. http://dx.doi.org/10.1299/jsmemag.88.796_253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Temam,, R., A. Miranville,, and P. Gremaud,. "Mathematical Modeling in Continuum Mechanics." Applied Mechanics Reviews 54, no. 4 (2001): B57. http://dx.doi.org/10.1115/1.1383668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

MURAKAMI, Sumio. "Progress of continuum damage mechanics." JSME international journal 30, no. 263 (1987): 701–10. http://dx.doi.org/10.1299/jsme1987.30.701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kuropatenko, V. F. "New models of continuum mechanics." Journal of Engineering Physics and Thermophysics 84, no. 1 (2011): 77–99. http://dx.doi.org/10.1007/s10891-011-0457-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gegelia, T., and L. Jentsch. "Potential methods in continuum mechanics." Georgian Mathematical Journal 1, no. 6 (1994): 599–640. http://dx.doi.org/10.1007/bf02254683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Angoshtari, Arzhang, and Arash Yavari. "Differential Complexes in Continuum Mechanics." Archive for Rational Mechanics and Analysis 216, no. 1 (2014): 193–220. http://dx.doi.org/10.1007/s00205-014-0806-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Malyarenko, Anatoliy, and Martin Ostoja-Starzewski. "Towards stochastic continuum damage mechanics." International Journal of Solids and Structures 184 (February 2020): 202–10. http://dx.doi.org/10.1016/j.ijsolstr.2019.02.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Scholle, Markus. "Variational formulations in continuum mechanics." PAMM 11, no. 1 (2011): 693–94. http://dx.doi.org/10.1002/pamm.201110336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Altenbach, H. "Book Review:Fridtjov Irgens, Continuum Mechanics." ZAMM 88, no. 6 (2008): 520. http://dx.doi.org/10.1002/zamm.200890008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Capecchi, Danilo, and Giuseppe C. Ruta. "Piola’s contribution to continuum mechanics." Archive for History of Exact Sciences 61, no. 4 (2007): 303–42. http://dx.doi.org/10.1007/s00407-007-0002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ragueneau, Frédéric, Arnaud Delaplace, and Luc Davenne. "Mechanical behaviour related to continuum damage mechanics for concrete." Revue Française de Génie Civil 7, no. 5 (2003): 635–45. http://dx.doi.org/10.1080/12795119.2003.9692514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rodriguez, Miguel A., Christoph M. Augustin, and Shawn C. Shadden. "FEniCS mechanics: A package for continuum mechanics simulations." SoftwareX 9 (January 2019): 107–11. http://dx.doi.org/10.1016/j.softx.2018.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Stuke, Bernward. "Towards a Fundamental Structure of Continuum Mechanics." Zeitschrift für Naturforschung A 48, no. 8-9 (1993): 883–94. http://dx.doi.org/10.1515/zna-1993-8-909.

Full text
Abstract:
Abstract For a class of systems obeying Euler's equation of motion the existence of a quantity to be named "proper mechanical energy" (PME) is shown which, together with internal energy, results in a quantity to be named "proper energy" (PE), which is conserved under conditions of time-dependent potentials. The appertaining formal structure for the continuum mechanics of such systems is the counterpart to Gibbs' fundamental equation of thermodynamics and the relations deriving therefrom. Euler's equation of motion, in particular, corresponds to the Gibbs-Duhem equation of thermodynamics. The t
APA, Harvard, Vancouver, ISO, and other styles
48

Delphenich, D. H. "The optical-mechanical analogy for wave mechanics: a new hope." Journal of Physics: Conference Series 2197, no. 1 (2022): 012005. http://dx.doi.org/10.1088/1742-6596/2197/1/012005.

Full text
Abstract:
Abstract The continuum-mechanical formulation of wave mechanics suggests that there is an intermediate stage of theoretical generality between wave mechanics and point mechanics, namely, continuum mechanics. When that argument is applied to the corresponding transition from wave optics to geometrical optics, the corresponding intermediate stage is essentially the geometrical theory of diffraction, i.e., the theory of diffracted geodesics.
APA, Harvard, Vancouver, ISO, and other styles
49

Jorshari, Tahereh Doroudgar, and Mir Abbas Roudbari. "A Review on the Mechanical Behavior of Size-Dependent Beams and Plates using the Nonlocal Strain-Gradient Model." Journal of Basic & Applied Sciences 17 (December 1, 2021): 184–93. http://dx.doi.org/10.29169/1927-5129.2021.17.18.

Full text
Abstract:
Nowadays, the mechanical characteristics of micro-/nano-structures in the various types of engineering disciplines are considered as remarkable criteria which may restrict the performance of small-scale structures in the reality for a certain application. This paper deals with a comprehensive review pertinent to using the nonlocal strain-gradient continuum mechanics model of size-dependent micro-/nano-beams/-plates. According to the non-classical features of materials, using size-dependent continuum mechanics theories is mandatory to investigate accurately the mechanical characteristics of the
APA, Harvard, Vancouver, ISO, and other styles
50

Gallyamov, I. I., and L. F. Yusupova. "Magnetization of an elastic ferromagnet." Journal of Physics: Conference Series 2061, no. 1 (2021): 012026. http://dx.doi.org/10.1088/1742-6596/2061/1/012026.

Full text
Abstract:
Abstract At the macroscopic level, ferromagnetism is a quantum mechanical phenomenon. To describe magnetic materials, it is necessary to create a heuristic model that in terms of continuum mechanics describes the interaction between the lattice continuum, which is a carrier of deformations, and the magnetization field, which is associated with the spin continuum through the gyromagnetic effect. According to the laws of quantum mechanics, each individual particle is associated with a magnetic moment and an internal angular momentum – spin. Electrons mainly contribute to the magnetic moment of t
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!