Academic literature on the topic 'Control plant pathogens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Control plant pathogens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Control plant pathogens"
Sutthisa, W. "Biological Control Properties of Cyathus spp. to Control Plant Disease Pathogens." Journal of Pure and Applied Microbiology 12, no. 4 (December 30, 2018): 1755–60. http://dx.doi.org/10.22207/jpam.12.4.08.
Full textDawadi, Sujan, Fulya Baysal-Gurel, Karla M. Addesso, Prabha Liyanapathiranage, and Terri Simmons. "Fire Ant Venom Alkaloids: Possible Control Measure for Soilborne and Foliar Plant Pathogens." Pathogens 10, no. 6 (May 27, 2021): 659. http://dx.doi.org/10.3390/pathogens10060659.
Full textMarois, James J. "Biological Control of Plant Pathogens." Ecology 71, no. 4 (August 1990): 1632. http://dx.doi.org/10.2307/1938303.
Full textYandoc-Ables, C. B., E. N. Rosskopf, and R. Charudattan. "Plant Pathogens at Work: Improving Weed Control Efficacy." Plant Health Progress 8, no. 1 (January 2007): 33. http://dx.doi.org/10.1094/php-2007-0822-02-rv.
Full textLumsden, Robert D., and George C. Papavizas. "Biological control of soilborne plant pathogens." American Journal of Alternative Agriculture 3, no. 2-3 (1988): 98–101. http://dx.doi.org/10.1017/s0889189300002253.
Full textSánchez-Vallet, Andrea, Simone Fouché, Isabelle Fudal, Fanny E. Hartmann, Jessica L. Soyer, Aurélien Tellier, and Daniel Croll. "The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens." Annual Review of Phytopathology 56, no. 1 (August 25, 2018): 21–40. http://dx.doi.org/10.1146/annurev-phyto-080516-035303.
Full textFletcher, J. D., F. A. Shah, R. C. Butler, S. L. H. Viljanen-Rollinson, and M. V. Marroni. "Control of plant pathogens practical experiments in eradication." New Zealand Plant Protection 62 (August 1, 2009): 409. http://dx.doi.org/10.30843/nzpp.2009.62.4858.
Full textKuo, Yen-Wen, and Bryce W. Falk. "RNA interference approaches for plant disease control." BioTechniques 69, no. 6 (December 2020): 469–77. http://dx.doi.org/10.2144/btn-2020-0098.
Full textde Nooij, M. P., W. H. van der Putten, and R. Campbell. "Biological Control of Microbial Plant Pathogens." Journal of Applied Ecology 27, no. 3 (December 1990): 1090. http://dx.doi.org/10.2307/2404399.
Full textThomashow, Linda S. "Biological control of plant root pathogens." Current Opinion in Biotechnology 7, no. 3 (June 1996): 343–47. http://dx.doi.org/10.1016/s0958-1669(96)80042-5.
Full textDissertations / Theses on the topic "Control plant pathogens"
Holliday, Gillian. "Biological control of seed-borne bacterial plant pathogens." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309601.
Full textHelps, Joseph Christopher. "Cultivar mixtures and the control of plant pathogens." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708199.
Full textMcGinley, Susan. "Exploding Zoospores: Using Biosurfactants to Control Plant Pathogens." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1998. http://hdl.handle.net/10150/622309.
Full textAl-Gharabally, Dunia Hashim. "Biological control of soilborne plant pathogens by greenwaste compost." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393320.
Full textKrupska, Iuliia. "Fungal pathogens for biological control of crabgrass «Digitaria spp.» in Canada." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110609.
Full textLa digitaire est un problème majeur dans le gazon au Canada et les infestations peuvent être aussi élevées que 30% dans les pelouses résidentielles. En raison de l'interdiction et des restrictions sur l'utilisation des herbicides chimiques dans plusieurs provinces, villes et municipalités du Canada, il n'existe pas actuellement de solution efficace pour contrôler la digitaire. Deux espèces de digitaire sont couramment trouvées dans les terres cultivées et le gazon soit la digitaire sanguine (Digitaria sanguinalis) et la digitaire astringente (Digitaria ischaemum). Plusieurs espèces de champignons phytopathogènes ont été étudiés en Chine et aux États-Unis comme agents de lutte biologique possibles de Digitaria spp. Parmi les espèces testées, l'espèce la plus prometteuse pour l'utilisation au Canada se trouve dans le genre Curvularia (C. intermédiaire, C. lunata, C. eragrostidis). Dans la présente étude, 23 cultures fongiques associées à Digitaria spp. ont été isolées à partir de feuilles présentant des symptômes visuels de maladies. Elles ont été identifiées à un niveau de genre ou d'espèce. La croissance et la production de spores ont été évaluées pour chaque isolat et les isolats qui démontraient une faible croissance et sporulation ont été éliminés des expériences subséquentes. Les 20 isolats restants ont été testés pour leur pathogénie sur la digitaire sanguine et astringente. Les isolats appartenant à l'espèce C. eragrostidis ont été les plus efficaces. Dans un même temps, ils ne nuisaient pas de façon significative à la majorité des graminées à gazon et des cultures céréalières, mais ont causé des dégâts significatifs sur les graminées fourragères testées. En raison de l'absence de différence dans sa gamme d'hôtes et de sa supériorité pour la production de spores, l'isolat Dip0307 (C. eragrostidis) a été choisi pour une recherche plus approfondie. Il a été soumis à différentes températures et durées d'exposition à la rosée et il a été comparé avec la souche chinoise QZ-2000 de C. eragrostidis. Cette étude nous a permis de conclure que l'isolat Dip0307 de C. eragrostidis est un bon candidat pour le développement d'un bioherbicide contre la digitaire sanguine et astringente au Canada.
Kotze, Charl. "Biological control of the grapevine trunk disease pathogens : pruning wound protection." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2117.
Full textIn recent years, several studies have conclusively shown that numerous pathogens, including several species in the Botryosphaeriaceae, Phomopsis, Phaeoacremonium, as well as Phaeomoniella chlamydospora and Eutypa lata, contribute to premature decline and dieback of grapevines. These pathogens have the ability to infect grapevines through pruning wounds, which leads to a wide range of symptoms developing that includes stunted growth, cankers and several types of wood necrosis. Pruning wounds stay susceptible for 2 to 16 weeks after pruning and sustained levels of pruning wound protection is therefore required. The aims of this study were to (i) evaluate the ability of several biological agents to protect pruning wounds, (ii) characterise unknown Trichoderma strains and identify their modes of action and (iii) determine the optimal time of season for biological agent application. Several biological agents were initially evaluated in a laboratory for their antagonism against trunk disease pathogens. The best performing control agents were tested in a field trial conducted on Merlot and Chenin blanc vines in the Stellenbosch region. Spurs were pruned to three buds and the fresh pruning wounds were treated with benomyl as a control treatment, Trichoderma-based commercial products, Vinevax® and Eco77®, Bacillus subtilis, and Trichoderma isolates, USPP-T1 and -T2. Seven days after treatment the pruning wounds were spray inoculated with spore suspensions of four Botryosphaeriaceae spp. (Neofusicoccum australe, N. parvum, Diplodia seriata and Lasiodiplodia theobromae), Eutypa lata, Phaeomoniella chlamydospora and Phomopsis viticola. After a period of 8 months the treatments were evaluated by isolations onto potato dextrose agar. Trichodermabased products and isolates in most cases showed equal or better efficacy than benomyl, especially USPP-T1 and -T2. Moreover, these isolates demonstrated a very good ability to colonise the wound tissue. The two uncharacterised Trichoderma isolates (USPP-T1 and USPP-T2), which were shown to be highly antagonistic toward the grapevine trunk disease pathogens, were identified by means of DNA comparison, and their ability to inhibit the mycelium growth of the trunk disease pathogens by means of volatile and non-volatile metabolite production studied. The two gene areas that were used include the internal transcribed spacers (ITS 1 and 2) and the 5.8S ribosomal RNA gene and the translation elongation factor 1 (EF). The ITS and EF sequences were aligned to published Trichoderma sequences and the percentage similarity determined and the two Trichoderma isolates were identified as Trichoderma atroviride. The volatile production of T. atroviride isolates was determined by placing an inverted Petri dish with Trichoderma on top of a dish with a pathogen isolate and then sealed with parafilm. Trichoderma isolates were grown for 2 days on PDA where after they were inverted over PDA plates containing mycelial plugs. The inhibition ranged from 23.6% for L. theobromae to 72.4% for P. viticola. Inhibition by non-volatile products was less than for the volatile inhibition. Inhibition ranged from 7.5% for N. parvum to 20.6% for L. theobromae. In the non-volatile inhibition USPP-T1 caused significantly more mycelial inhibition than USPP-T2. The timing of pruning wound treatment and subsequent penetration and colonisation of the wound site was also determined. One-year-old canes of the Shiraz and Chenin blanc cultivars were grown in a hydroponic system, pruned and spray treated with a spore suspension of Trichoderma atroviride (USPP-T1) as well as a fluorescent pigment. On intervals 1, 3, 5 and 7 days after treatment, the distal nodes were removed and dissected longitudinally. From the one half, isolations were made at various distances from the pruning surface, while the other half was observed under ultra-violet light to determine the depth of fluorescent pigment penetration. Shortly after spray-inoculation of a fresh pruning wound, Trichoderma was isolated only from the wound surface and shallow depths into the wound (2 to 5 mm). One week after inoculation, Trichoderma was isolated at 10 mm depths, and after 2 weeks, at 15 mm depths. Fluorescent pigment particles were observed to a mean depth of 6 mm, which suggests that initial isolation of Trichoderma at these depths was resultant of the physical deposition of conidia deeper into the pruning wound tissue, whereas the isolation of Trichoderma from deeper depths might be attributed to colonisation of grapevine tissue. In a vineyard trial, fluorescent pigment was spray-applied to pruning wounds of Shiraz and Chenin blanc grapevines during July and September at intervals 0, 1, 3, 7 and 14 days after pruning. One week after treatment, the distal nodes were removed and dissected longitudinally. Each half was observed under UV light and the pigment penetration measured. For Chenin blanc and Shiraz, July pruning wounds showed significant deeper penetration of the pigment than pruning wounds treated in September. Moreover, pruning wounds made in September showed pigment particles in longitudinal sections up to 1 day after pruning, whereas wounds made in July showed pigment particles up to 3 days in the xylem vessels. These findings suggest that the best time for application of a biological control agent should be within the first 24 hours after pruning.
Cunniffe, Nicholas James. "Modelling dispersal of soil-borne plant pathogens and efficacy of biological control." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612498.
Full textBester, Wilma. "Characterisation and management of trunk disease-causing pathogens on table grapevines." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/21550.
Full textENGLISH ABSTRACT: Phaeomoniella chlamydospora, Eutypa lata, Phomopsis, Phaeoacremonium, and Botryosphaeria spp. are important trunk disease pathogens that cause premature decline and dieback of grapevine. Previous research has focused primarily on wine grapes and the incidence and symptomatology of these pathogens on table grapes were largely unknown. A survey was therefore conducted to determine the status and distribution of these pathogens and associated symptoms in climatically diverse table grape growing regions. Fifteen farms were identified in the winter rainfall (De Doorns, Paarl and Trawal) and summer rainfall (Upington and Groblersdal) areas. Samples were taken in July and August 2004 from Dan-ben-Hannah vineyards that were 8 years and older. Distal ends of arms were removed from 20 randomly selected plants in each vineyard. These sections were dissected and isolations were made from each of the various symptom types observed: brown or black vascular streaking, brown internal necrosis, wedge-shaped necrosis, watery necrosis, esca-like brown and yellow soft wood rot, as well as asymptomatic wood. Fungal isolates were identified using molecular and morphological techniques. Pa. chlamydospora was most frequently isolated (46.0%), followed by Phaeoacremonium aleophilum (10.0%), Phomopsis viticola (3.0%), Botryosphaeria obtusa (3.0%), B. rhodina (2.2%), B. parva (2.0%), Fusicoccum vitifusiforme (0.6%), B. australis, B. dothidea and an undescribed Diplodia sp. (0.2% each), while E. lata was not found. Most of these pathogens were isolated from a variety of symptom types, indicating that disease diagnosis can not be based on symptomatology alone. Pa. chlamydospora was isolated from all areas sampled, although most frequently from the winter rainfall region. Pm. aleophilum was found predominantly in Paarl, while P. viticola only occurred in this area. Although B. obtusa was not isolated from samples taken in De Doorns and Groblersdal, it was the most commonly isolated Botryosphaeria sp., being isolated from Upington, Paarl and Trawal. B. rhodina occurred only in Groblersdal and B. parva in Paarl, Trawal and Groblersdal, while B. australis was isolated from Paarl only. The rest of the isolates (33%) consisted of sterile cultures, Exochalara, Cephalosporium, Wangiella, Scytalidium, Penicillium spp. and two unidentified basidiomycetes, which were isolated from five samples with yellow esca-like symptoms from the Paarl area. These findings clearly illustrate that grapevine trunk diseases are caused by a complex of fungal pathogens, which has serious implications for disease diagnosis and management. Protection of wounds against infection by any of these trunk disease pathogens is the most efficient and cost-effective means to prevent grapevine trunk diseases. However, previous research on the effectiveness of chemical pruning wound protectants has mostly focused on the control of Eutypa dieback only. Fungicide sensitivity studies have been conducted for Pa. chlamydospora, P. viticola and Eutypa lata, but no such studies have been conducted for the pathogenic Botryosphaeria species from grapevine in South Africa. Ten fungicides were therefore tested in vitro for their efficacy on mycelial inhibition of the four most common and/or pathogenic Botryosphaeria species in South Africa, B. australis, B. obtusa, B. parva and B. rhodina. Iprodione, pyrimethanil, copper ammonium acetate, kresoxim-methyl and boscalid were ineffective in inhibiting the mycelial growth at the highest concentration tested (5 μg/ml; 20 μg/ml for copper ammonium acetate). Benomyl, tebuconazole, prochloraz manganese chloride and flusilazole were the most effective fungicides with EC50 values for the different species ranging from 0.36-0.55, 0.07-0.17, 0.07-1.15 and 0.04-0.36 μg/ml, respectively. These fungicides, except prochloraz manganese chloride, are registered on grapes in South Africa and were also reported to be effective against Pa. chlamydospora, P. viticola and E. lata. Results from bioassays on 1-year-old Chenin Blanc grapevine shoots indicated that benomyl, tebuconazole and prochloraz manganese chloride were most effective in limiting lesion length in pruning wounds that were inoculated with the Botryosphaeria spp after fungicide treatment. The bioassay findings were, however, inconclusive due to low and varied re-isolation data of the inoculated lesions. Benomyl, tebuconazole, prochloraz manganese chloride and flusilazole can nonetheless be identified as fungicides to be evaluated as pruning wound protectants in additional bioassays and vineyard trials against Botryosphaeria spp. as well as the other grapevine trunk disease pathogens.
AFRIKAANSE OPSOMMING: Phaeomoniella chlamydospora, Eutypa lata, Phomopsis, Phaeoacremonium, en Botryosphaeria spesies is die mees belangrikste stamsiekte patogene wat agteruitgang en vroeë terugsterwing van wingerd veroorsaak. Voorafgaande navorsing het hoofsaaklik gefokus op wyndruiwe en die voorkoms en simptomatologie van hierdie patogene op tafeldruiwe is dus grootliks onbekend. ‘n Opname is gevolglik gedoen in verskillende klimaaatsareas waar tafeldruiwe verbou word om die voorkoms en verspreiding, asook die simptome geassosieer met hierdie patogene, te bepaal. Vyftien plase is geïdentifiseer in die winter- (De Doorns, Paarl en Trawal) en somer-reënval (Upington en Groblersdal) streke. Wingerde (8 jaar en ouer) met die kultivar Dan-ben-Hannah is gekies vir opname en monsters is gedurende Julie en Augustus 2004 geneem. Die distale deel van ‘n arm is verwyder vanaf 20 lukraak gekose plante in elke wingerd. Hierdie dele is ontleed en isolasies is gemaak vanuit elke simptoomtipe wat beskryf is, naamlik bruin en swart vaskulêre verkleuring, bruin interne nekrose, wig-vormige nekrose, waterige nekrose, esca-geassosieerde bruin en geel sagte houtverrotting en asimptomatiese hout. Identifikasie van die swamagtige isolate is gedoen op grond van morfologiese eienskappe en molekulêre tegnieke. Pa. chlamydospora is die meeste geïsoleer (46.0%), gevolg deur Phaeoacremonium aleophilum (10.0%), Phomopsis viticola (3.0%), Botryosphaeria obtusa (3.0%), B. rhodina (2.2%), B. parva (2.0%), Fusicoccum vitifusiforme (0.6%), B. australis, B. dothidea en ‘n onbeskryfde Diplodia sp. (0.2% elk), terwyl E. lata nie geïsoleer is nie. Hierdie patogene is elk geïsoleer vanuit ‘n verskeidenheid simptoomtipes, wat daarop dui dat siektediagnose nie alleenlik op simptomatologie gebaseer kan word nie. Pa. chlamydospora is geïsoleer vanuit al die gebiede, alhoewel die patogeen opmerklik meer voorgekom het in die winter-reënval area. Pm. aleophilum het hoofsaaklik voorgekom in Paarl, terwyl P. viticola slegs in hierdie area voorgekom het. Alhoewel B. obtusa nie voorgekom het in die De Doorns en Groblersdal areas nie, was dit die mees algemeen geïsoleerde Botryosphaeria sp. en het in Upington, Paarl en Trawal voorgekom. B. rhodina het slegs in Groblersdal voorgekom, B. parva in Paarl, Groblersdal en Trawal en B. australis het slegs in Paarl voorgekom. Die res van die isolate (33%) het bestaan uit steriele kulture, Exochalara, Cephalosporium, Wangiella, Scytalidium, en Penicillium spesies asook twee onbekende basidiomycete isolate, geïsoleer vanuit vyf monsters met geel eska-geassosieerde simptome vanuit die Paarl area. Hierdie resultate illustreer dus die feit dat wingerdstamsiektes deur ‘n kompleks van swampatogene veroorsaak word, wat belangrike implikasies het vir die bestuur en diagnose van hierdie siektes. Wondbeskerming teen infeksie van enige van hierdie stamsiekte patogene is die mees doeltreffende en koste-effektiewe manier om wingerdstamsiektes te voorkom. Vorige navorsing aangaande die effektiwiteit van chemiese wondbeskermingsmiddels het egter slegs gefokus op die beheer van Eutypa terugsterwing. In vitro swamdoder sensitiwiteitstoetse is gedoen vir Pa. chlamydospora, P. viticola en Eutypa lata, maar geen studies is al gedoen ten opsigte van die patogeniese Botryosphaeria spesies op wingerd in Suid-Afrika nie. Tien swamdoders is dus getoets vir inhibisie van in vitro miseliumgroei van die vier mees algemene en/of patogeniese Botryosphaeria spesies wat in Suid-Afrika voorkom, naamlik B. australis, B. obtusa, B. parva en B. rhodina. Iprodione, pyrimethanil, koper ammonium asetaat, kresoxim-metiel en boscalid was oneffektief by die hoogste konsentrasies getoets (5 μg/ml; 20 μg/ml vir koper ammonium asetaat). Benomyl, tebuconasool, prochloraz mangaan chloried en flusilasool was die mees effektiewe swamdoders met EC50 waardes tussen 0.36-0.55, 0.07-0.17, 0.07-1.15 en 0.04-0.36 μg/ml, onderskeidelik vir die verskillende spesies. Hierdie fungisiedes, behalwe prochloraz mangaan chloried, is geregistreer op druiwe in Suid-Afrika en is ook effektief gevind teenoor Pa. chlamydospora, P. viticola en E. lata. Resultate van biotoetse op 1-jaar-oue Chenin Blanc wingerd lote het getoon dat benomyl, tebuconasool en prochloraz mangaan chloried die effektiefste was om die lengte van letsels in snoeiwonde, geinokuleer met Botryosphaeria spesies na die aanwending van swamdoder behandelings, te verminder. Die bevindinge was egter onbeslis as gevolg van die lae en variërende her-isolerings data. Benomyl, tebuconasool, prochloraz mangaan chloried en flusilasool kan egter geïdentifiseer word as swamdoders wat verder geevalueer kan word as snoeiwond beskermingsmiddels teen Botryosphaeria spesies asook ander wingerd stamsiekte patogene in verdere biotoetse en wingerdproewe.
Murray, Donna. "Interactions of Pseudomonas fluorescens and soil-borne oomycete plant pathogens in a biological control system." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259856.
Full textReyna-Granados, Javier Rolando. "Control of Foodborne Pathogenic Bacteria Using Natural Plant Antimicrobials." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228511.
Full textBooks on the topic "Control plant pathogens"
H, Dickinson C., ed. Plant pathology and plant pathogens. 3rd ed. Malden, Mass: Blackwell Science, 1998.
Find full textCampbell, R. E. Biological control of microbial plant pathogens. Cambridge: Cambridge University Press, 1989.
Find full textINDERJIT and K. G. MUKERJI, eds. Allelochemicals: Biological Control of Plant Pathogens and Diseases. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4447-x.
Full textMelbourne), International Congress of Plant Pathology (4th 1983 University of. Ecology and management of soilborne plant pathogens. St. Paul, Minn., U.S.A: American Phytopathological Society, 1985.
Find full texteditor, Moorman Gary, Wohanka Walter editor, and Büttner Carmen editor, eds. Biology, detection, and management of plant pathogens in irrigation water. St. Paul, Minnesota: APS Press, The American Phytopathological Society, 2014.
Find full textUS DEPARTMENT OF AGRICULTURE. Biological control: spreading the benefits. [Washington, D.C.]: U.S. Dept. of Agriculture, 1989.
Find full textEuropean Foundation for Plant Pathology. Conference. Biotic interactionsand soil-borne diseases. Amsterdam: Elsevier, 1991.
Find full textPorter, Read. Strategies for effective state early detection/rapid response programs for plant pests and pathogens. [Washington, D.C.]: Environmental Law Institute, 2007.
Find full textPorter, Read. Strategies for effective state early detection/rapid response programs for plant pests and pathogens. [Washington, D.C.]: Environmental Law Institute, 2007.
Find full textPorter, Read. Strategies for effective state early detection/rapid response programs for plant pests and pathogens. [Washington, D.C.]: Environmental Law Institute, 2007.
Find full textBook chapters on the topic "Control plant pathogens"
Van Driesche, Roy G., and Thomas S. Bellows. "Biological Control Agents for Plant Pathogens." In Biological Control, 93–101. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1157-7_6.
Full textStouvenakers, Gilles, Peter Dapprich, Sebastien Massart, and M. Haïssam Jijakli. "Plant Pathogens and Control Strategies in Aquaponics." In Aquaponics Food Production Systems, 353–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_14.
Full textReddy, P. Parvatha. "Biological Control of Plant Pathogens." In Sustainable Crop Protection under Protected Cultivation, 61–69. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-952-3_5.
Full textVan Driesche, Roy G., and Thomas S. Bellows. "Methods for Biological Control of Plant Pathogens." In Biological Control, 235–56. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1157-7_12.
Full textWatson, Alan K. "The Classical Approach with Plant Pathogens." In Microbial Control of Weeds, 3–23. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9680-6_1.
Full textCharudattan, R. "The Mycoherbicide Approach with Plant Pathogens." In Microbial Control of Weeds, 24–57. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9680-6_2.
Full textElad, Yigal, and Stanley Freeman. "Biological Control of Fungal Plant Pathogens." In Agricultural Applications, 93–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-03059-2_6.
Full textKuc, Joseph, and Norman E. Strobel. "Induced Resistance Using Pathogens and Nonpathogens." In Biological Control of Plant Diseases, 295–303. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9468-7_40.
Full textSaxena, Prachi, Jyoti Srivastava, Shrishti Pandey, Shreya Srivastava, Neha Maurya, Niharika Chand Kaushik, Shubham Mishra, et al. "Plants for Biocontrol and Biological Control of Plant Pathogens." In Plant Biotic Interactions, 147–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26657-8_10.
Full textKaur, Surinder, and K. G. Mukerji. "Biological Control of Bacterial Plant Diseases." In Biotechnological Approaches in Biocontrol of Plant Pathogens, 157–76. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4745-7_8.
Full textConference papers on the topic "Control plant pathogens"
Barriga Medina, elia. "Exploring fungal pathogens to control invasive raspberry (Rubus niveus) in the Galapagos Islands." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383218.
Full textMegan N. Marshall and Jean S. VanderGheynst. "Combining Compost Application and Soil Solarization for Control of Soilborne Plant Pathogens." In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.14969.
Full textLencautan, M. "Determinarea nivelului de rezistenţă a genotipurilor contra atacul bolilor principale a materialului genetic de ameliorare a culturilor leguminoase pe fonduri naturale şi artificiale de infecţie." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.69.
Full text"Quarantine and surveillance strategies for plant pathogen detection and control." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.f3.baxter.
Full textLupascu, Galina, and Svetlana Gavzer. "Variabilitatea şi heritabilitatea vigorii boabelor de grâu comun la interacţiunea cu Drechslera Sorokiniana." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.68.
Full textStingaci, Aurelia, and Leonid Volosciuc. "Biotehnologii avansate de obținere a preparatului biologic în scopul combaterii dăunătorilor." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.30.
Full textKalaiselvi, V. K. G., J. Ranjani, D. Pushgara Rani, S. M. Vignesh Kumar, and S. Mohana Priya. "Deep Learning based Pathogen Infestation Detection In Plants." In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2021. http://dx.doi.org/10.1109/iciccs51141.2021.9432106.
Full textCrucean, Stefan. "Principalii dăunători ale culturii nucifere din clasa Arachnida și manifestarea efectelor negative ale acestora." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.04.
Full textDrobotova, E. N. "Pests of essential oil crops grown at the Research Institute of Agriculture of Crimea." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-18.
Full textDiánez, F., M. Santos, M. de cara, and J. C. Tello. "Evaluation of Crude Glycerol from Biodiesel Production as a plant pathogen control agent." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0007.
Full textReports on the topic "Control plant pathogens"
Harms, Nathan, Judy Shearer, James Cronin, and John Gaskin. Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41662.
Full textSafeguarding through science: Center for Plant Health Science and Technology 2009 Accomplishments. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, February 2011. http://dx.doi.org/10.32747/2011.7296843.aphis.
Full text