Academic literature on the topic 'Control stick'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Control stick.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Control stick"
Jang, Min Gyu, Chul Hee Lee, and Seung Bok Choi. "Precision Motion Control of a Smart Structure Using an Enhanced Stick-Slip Model." Advances in Science and Technology 56 (September 2008): 98–103. http://dx.doi.org/10.4028/www.scientific.net/ast.56.98.
Full textEndlein, T., and W. Federle. "To stick and not getting stuck — detachment control in ants." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146, no. 4 (April 2007): S121—S122. http://dx.doi.org/10.1016/j.cbpa.2007.01.222.
Full textShi, Yunlai, Chengshu Lou, and Jun Zhang. "Investigation on a Linear Piezoelectric Actuator Based on Stick-Slip/Scan Excitation." Actuators 10, no. 2 (February 20, 2021): 39. http://dx.doi.org/10.3390/act10020039.
Full textYang, Tingsong, Jiayang Liu, Xinyi Ren, Yingwei Wang, and Fengshan Du. "Research on roll profile electromagnetic control ability in optimal electromagnetic stick parameter." Metallurgical Research & Technology 118, no. 3 (2021): 305. http://dx.doi.org/10.1051/metal/2021031.
Full textDupont, P. E. "Avoiding stick-slip through PD control." IEEE Transactions on Automatic Control 39, no. 5 (May 1994): 1094–97. http://dx.doi.org/10.1109/9.284901.
Full textReeves, N. Peter, Pramod Pathak, John M. Popovich, and Vilok Vijayanagar. "Limits in motor control bandwidth during stick balancing." Journal of Neurophysiology 109, no. 10 (May 15, 2013): 2523–27. http://dx.doi.org/10.1152/jn.00429.2012.
Full textFarida, Ida, and Komala Komala. "MENGEMBANGKAN KEMAMPUAN BERPIKIR SIMBOLIK PADA ANAK USIA DINI MELALUI MEDIA PEMBELAJARAN STIK BERGAMBAR." CERIA (Cerdas Energik Responsif Inovatif Adaptif) 2, no. 6 (September 6, 2019): 359. http://dx.doi.org/10.22460/ceria.v2i6.p359-362.
Full textNam, Yoonsu, and Sung Kyung Hong. "Active stick control using frictional torque compensation." Sensors and Actuators A: Physical 117, no. 2 (January 2005): 194–202. http://dx.doi.org/10.1016/j.sna.2004.06.018.
Full textTaylor, Hugh R., and Heathcote R. Wright. "Dip-stick test for trachoma control programmes." Lancet 367, no. 9522 (May 2006): 1553–54. http://dx.doi.org/10.1016/s0140-6736(06)68668-6.
Full textMetalis, S. A., R. N. Pennella, and S. L. Rodriquez. "Stick Control Modulations Index Pilot Mental Workload." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 39, no. 14 (October 1995): 952. http://dx.doi.org/10.1177/154193129503901444.
Full textDissertations / Theses on the topic "Control stick"
Gräsberg, Pontus, and Bill Lavebratt. "Reaction Wheel Stabilized Stick." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264481.
Full textReglerteknik kan användas för att göra ostabila system stabila. Målet med detta projekt var att göra detta med ett system i form av en inverterad pendel med två frihetsgrader som balanseras med hjälp av två svänghjul. Projektet söker att besvara frågan om vad som är de viktigaste faktorerna för att få systemet att vara stabilt över en längre tid. En tillståndsåterkoppling användes som regulator vilket innebar att flera olika sensorer behövdes för att mäta de olika tillstånden. För att kunna konstruera en fungerande prototyp utvecklades en matematisk modell av systemet vilken användes för simulering av systemet. Till slut konstruerades en fungerade prototyp som till synes kunde balansera över oöverskådlig tid. En av de faktorer som visade sig påverka huruvida systemet uppnår stabilitet över längre tid var hur bra referenspunkt som gavs till regulatorn, det vill säga det tillstånd som regulatorn reglerar systemet mot. Det visade sig vara möjligt att implementera en självjusterande referenspunkt som gjorde systemet stabilt över tid.
Darby, A. P. "Active control of flexible structures using inertial stick-slip actuators." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598276.
Full textGraham, Paul. "The non-stick approach to the control of marine fouling." Thesis, University of Portsmouth, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343379.
Full textAsimakopoulos, Spilios. "The control of salivary glands in the stick insect, carausius morosus." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0002/MQ40880.pdf.
Full textArcieri, Michael Angel Santos. "Controle de vibrações mecânicas tipo "stick slip" em colunas de perfuração." Pós-Graduação em Engenharia Elétrica, 2013. https://ri.ufs.br/handle/riufs/5011.
Full textVibrações mecânicas são inevitáveis nas operações de perfuração. Vibrações torcionais stick-slip são vibrações que ocorrem em colunas de perfuração, as quais são produzidas pelas variações periódicas de torque e caracterizadas por grandes oscilações da velocidade da broca. Estas vibrações são prejudiciais, mais pela característica cíclica do fenômeno que pela amplitude da mesma, podendo originar fadiga da tubulação, falhas nos componentes da coluna de perfuração, deformações nas paredes do poço, desgaste excessivo da broca, baixa taxa de penetração e, inclusive, colapso do processo de perfuração. A frequência destas oscilações indesejadas pode ser reduzida pela aplicação de técnicas de controle automático. O objetivo deste trabalho é avaliar, mediante simulações numéricas, a aplicação de técnicas de controle convencional, como o controle proporcional-integral (PI), e não linear, como o controle por modos deslizantes (SMC) e o controle por linearização entrada-saída (IOLC) para eliminar a presença de oscilações stick-slip em colunas de perfuração. Os controladores são desenvolvidos principalmente para manter constante a velocidade do sistema de rotação, mediante a manipulação do torque do motor, para assim controlar inferencialmente a velocidade da broca, fornecendo desta maneira condições ótimas de operação, além de preservar a estabilidade do sistema. Resultados das simulações, usando modelos torcionais de uma coluna de perfuração de dois graus de liberdade (2-DOF) e de quatro graus de liberdade (4-DOF), mostram o desempenho dos sistemas de controle propostos, os quais são analisados e comparados qualitativamente.
Silva, James Emanuel. "PNIPAM hydrogel micro/nanostructures for bulk fluid and droplet control." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54252.
Full textRosano-Matchain, Hugo Leonardo. "Decentralised compliant control for hexapod robots : a stick insect based walking model." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2574.
Full textBromfield, Michael. "Criteria for acceptable stick force gradients of a light aeroplane." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6861.
Full textBusse, Leif [Verfasser]. "Investigation, prediction and control of rubber friction and stick-slip : experiment, simulation, application / Leif Busse." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2013. http://d-nb.info/1032719249/34.
Full textJohannessen, Morten Krøtøy, and Torgeir Myrvold. "Stick-Slip Prevention of Drill Strings Using Nonlinear Model Reduction and Nonlinear Model Predictive Control." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9112.
Full textThe main focus of this thesis is aspects in the development of a system for prevention of stick-slip oscillations in drill strings that are used for drilling oil wells. Stick-slip is mainly caused by elasticity of the drill string and changing frictional forces at the bit; static frictional forces are higher than the kinetic frictional forces which make the bit act in a manner where it sticks and then slips, called stick-slip. Stick-slip leads to excessive bit wear, premature tool failures and a poor rate of penetration. A model predictive controller (MPC) should be a suitable remedy for this problem; MPC has gained great success in constrained control problems where tight control is needed. Friction is a highly nonlinear phenomenon and for that reason is it obvious that a nonlinear model is preferred to be used in the MPC to get prime control. Obviously it is of great importance that the internal model used in the MPC is of a certain quality, and as National Oilwell Varco (NOV) has developed a nonlinear drill string model in Simulink, it will be useful to check over this model. This model was therefore verified with a code-to-code comparison and validated using logging data provided from NOV. As the model describing the dynamics of the drill string is somewhat large, a nonlinear model reduction is needed due to the computational complexity of solving a nonlinear model predictive control problem. This nonlinear model reduction is based on the technique of balancing the empirical Gramians, a method that has proven to be successful for a variety of systems. A nonlinear drill string model has been reduced and implemented to a nonlinear model predictive controller (NMPC) and simulated for different scenarios; all proven that NMPC is able to cope with the stick-slip problem. Comparisons have been made with a linear MPC and an existing stick-slip prevention system, SoftSpeed, developed by National Oilwell Varco.
Books on the topic "Control stick"
Graham, Paul A. D. The non-stick approach to the control of marine fouling. Portsmouth: University of Portsmouth, School of Pharmacy and Biomedical Sciences, 2000.
Find full textAsimakopoulos, Spilios. The control of salivary glands in the stick insect, carausius morosus. Ottawa: National Library of Canada, 1998.
Find full textAiken, Edwin W. Effects of side-stick controllers on rotorcraft handling qualities for terrain flight. Moffett Field, CA: National Aeronautics and Space Administration, Ames Research Center, 1985.
Find full textLev, Raphael, and Espeland Pamela 1951-, eds. Stick up for yourself!: Every kid's guide to personal power and positive self-esteem. Minneapolis, MN: Free Spirit Pub., 1999.
Find full text1951-, Espeland Pamela, and Raphael Lev, eds. Stick up for yourself!: Every kid's guide to personal power and positive self-esteem. Minneapolis, MN: Free Spirit Pub., 1990.
Find full textIsmail. Stock control system. Manchester: University of Manchester, Department of Computer Science, 1996.
Find full textAnderson, Sarah. Online stock control system. Oxford: Oxford Brookes University, 2002.
Find full textplc, Kewill Systems. Micross stock control: Users guide. Walton-on-Thames: Kewill Systems, 1987.
Find full textLu, Han Viet. An automated stock control system. Manchester: University of Manchester, Departmentof Computer Science, 1995.
Find full textCrampsie, B. L. J. Stock control and its cost effectiveness. Oxford: Oxford Brookes University, 1995.
Find full textBook chapters on the topic "Control stick"
Armstrong-Hélouvry, Brian. "Analysis of Stick-Slip." In Control of Machines with Friction, 95–124. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3972-8_7.
Full textBhuvana, Korrapati, Bodavula Krishna Bhargavi, and S. Vigneshwari. "A Safety Stick for Elders." In Advances in Systems, Control and Automations, 513–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8685-9_53.
Full textSaldivar Márquez, Martha Belem, Islam Boussaada, Hugues Mounier, and Silviu-Iulian Niculescu. "Stick-Slip Control: Lyapunov-Based Approach." In Analysis and Control of Oilwell Drilling Vibrations, 179–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15747-4_11.
Full textRakotondrabe, Micky, Yassine Haddab, and Philippe Lutz. "Modeling and Control of Stick-slip Micropositioning Devices." In Micro, Nanosystems and Systems on Chips, 1–30. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557815.ch1.
Full textLeine, R. I., and D. H. van Campen. "Stick-Slip Whirl Interaction in Drillstring Dynamics." In IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, 287–96. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3268-4_27.
Full textZhang, Yunzhi, Xianmin Zhang, and Qinghua Lu. "The Vibration Control of Stick-Slip Actuated Precision Positioning Structure." In Lecture Notes in Electrical Engineering, 1057–67. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2875-5_86.
Full textRosano, Hugo, and Barbara Webb. "The Control of Turning in Real and Simulated Stick Insects." In From Animals to Animats 9, 150–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840541_13.
Full textDoghmane, Mohamed Z., Abdelmoumen Bacetti, and Madjid Kidouche. "Stick-Slip Vibrations Control Strategy Design for Smart Rotary Drilling Systems." In Artificial Intelligence and Renewables Towards an Energy Transition, 197–209. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63846-7_20.
Full textWatanabe, Kazumi. "Wave Radiation from a Stick-Slip-Like Source Motion (SH-Wave)." In Advanced Dynamics and Model-Based Control of Structures and Machines, 205–13. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_24.
Full textBalasubramaniam, Ramesh. "On the Control of Unstable Objects: The Dynamics of Human Stick Balancing." In Advances in Experimental Medicine and Biology, 149–68. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5465-6_8.
Full textConference papers on the topic "Control stick"
Leong, Yoke Peng, and John C. Doyle. "Understanding robust control theory via stick balancing." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798480.
Full textBencsik, Laszlo, and Tamas Insperger. "Periodic Control in a Stick Balancing Problem." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97979.
Full textDong, Yiqun, Lidong Zhang, Yijun Zhang, and Jianliang Ai. "Attitude Protection Control for Side Stick-operated Aircraft." In AIAA Infotech@Aerospace (I@A) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-5043.
Full textLiyu Cao and H. M. Schwartz. "Stick-slip friction compensation for PID position control." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.876666.
Full textNagy, Dalma J., László Bencsik, and Tamás Insperger. "Modelling Stick Balancing by Applying Switching-Type Control." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22419.
Full textDurham, Wayne. "Control stick logic in high angle-of-attack maneuvering." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3683.
Full textYoshihiko Takahashi and Hirofumi Takagi. "Joy stick operation speed of intelligent robotic wheelchair." In 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406832.
Full textBarhoumi, Toumadher, and Dongsuk Kum. "Automated Schematic Design of Power-Split Hybrid Vehicles With a Single Planetary Gear." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6086.
Full textHeck, B. S., and A. A. Ferri. "Analysis of stick-slip motion in Coulomb damped systems." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.609025.
Full textHarris, Matthew W., Behçet Açıkmeşe, and Eric van Oort. "LMI Based Control of Stick-Slip Oscillations in Drilling." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6164.
Full textReports on the topic "Control stick"
Whitaker, C. N., and R. E. Zimmerman. Delethalized Cyclic Control Stick. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada173931.
Full textColdsnow, Matthew, Prospero Uybarreta, Dennis Rippy, Alan Driver, and Christopher Kirkland. Limited Investigation of Active Feel Control Stick System (Active Stick). Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada516721.
Full textAcosta-Henao, Miguel, Laura Alfaro, and Andrés Fernández. Sticky Capital Controls. Cambridge, MA: National Bureau of Economic Research, April 2020. http://dx.doi.org/10.3386/w26997.
Full textChari, Anusha, Paige Ouimet, and Linda Tesar. Acquiring Control in Emerging Markets: Evidence from the Stock Market. Cambridge, MA: National Bureau of Economic Research, November 2004. http://dx.doi.org/10.3386/w10872.
Full textAigner, John D., Katlin Mooneyham, Christopher McCullough, and Thomas Kuhar. Control of Brown Marmorated Stink Bug with Insecticide-Treated Window Screens. Blacksburg, VA: Virginia Cooperative Extension, January 2021. http://dx.doi.org/10.21061/ento-177np_ento-400np.
Full textHubbard, R. Glenn, and Darius Palia. Benefits of Control, Managerial Ownership, and the Stock Returns of Acquiring Firms. Cambridge, MA: National Bureau of Economic Research, April 1995. http://dx.doi.org/10.3386/w5079.
Full textWang, Wensheng. Advanced SOFC quality control and the role of manufacturing defects on stack reliability. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430240.
Full textAidun, Cyrus K. Improving paper machine efficiency through on-line control of stock delivery, headbox and forming hydrodynamics. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/761133.
Full textCyrus K. Aidun. Improving paper machine efficiency through on-line control of stock delivery, headbox and forming hydrodynamics. Quarterly report. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/764760.
Full textBebchuk, Lucian, Reinier Kraakman, and George Triantis. Stock Pyramids, Cross-Ownership, and the Dual Class Equity: The Creation and Agency Costs of Seperating Control from Cash Flow Rights. Cambridge, MA: National Bureau of Economic Research, February 1999. http://dx.doi.org/10.3386/w6951.
Full text