Academic literature on the topic 'Control vehicular'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Control vehicular.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Control vehicular"
Castrucci, P., and R. Godoy. "Vehicular traffic jam control." IEEE Latin America Transactions 4, no. 1 (March 2006): 21–26. http://dx.doi.org/10.1109/tla.2006.1642445.
Full textKathuria, Vinish. "Vehicular pollution control in Delhi." Transportation Research Part D: Transport and Environment 7, no. 5 (September 2002): 373–87. http://dx.doi.org/10.1016/s1361-9209(02)00006-8.
Full textM, Jerinjose, Artheeswari A, Ashika R, Ayesha A, and Backiyalakshmi R. "Congestion Control in Vehicular Network with Fair Beaconing Rate Adaptation." SIJ Transactions on Computer Networks & Communication Engineering 05, no. 03 (June 9, 2017): 01–03. http://dx.doi.org/10.9756/sijcnce/v5i3/05010050101.
Full textIkeda, Yuichi, Takashi Nakajima, and Yuichi Chida. "Vehicular slip ratio control using nonlinear control theory." IFAC Proceedings Volumes 44, no. 1 (January 2011): 8403–8. http://dx.doi.org/10.3182/20110828-6-it-1002.01325.
Full textIKEDA, Yuichi, Takashi NAKAJIMA, and Yuichi CHIDA. "Vehicular Slip Ratio Control Using Nonlinear Control Theory." Journal of System Design and Dynamics 6, no. 2 (2012): 145–57. http://dx.doi.org/10.1299/jsdd.6.145.
Full textPedraza, Luis Fernando, César Augusto Hernández, and Danilo Alfonso López. "Control de tráfico vehicular usando ANFIS." Ingeniare. Revista chilena de ingeniería 20, no. 1 (April 2012): 79–88. http://dx.doi.org/10.4067/s0718-33052012000100008.
Full textShia, Victor A., Yiqi Gao, Ramanarayan Vasudevan, Katherine Driggs Campbell, Theresa Lin, Francesco Borrelli, and Ruzena Bajcsy. "Semiautonomous Vehicular Control Using Driver Modeling." IEEE Transactions on Intelligent Transportation Systems 15, no. 6 (December 2014): 2696–709. http://dx.doi.org/10.1109/tits.2014.2325776.
Full textOrosz, Gábor, R. Eddie Wilson, and Gábor Stépán. "Traffic jams: dynamics and control." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1928 (October 13, 2010): 4455–79. http://dx.doi.org/10.1098/rsta.2010.0205.
Full textGupta, Suryakant, Nidhi Hiremath, Samiksha Raut, Gaurav Datkhile, and Prasiddh Trivedi. "Electronic Stability Control of Vehicles." ITM Web of Conferences 32 (2020): 01009. http://dx.doi.org/10.1051/itmconf/20203201009.
Full textKayarga, Tanuja, and H. M. Navyashree. "A Novel Framework to Control and Optimize the Traffic Congestion Issue in VANET." International Journal of Engineering & Technology 7, no. 2.31 (August 24, 2018): 245. http://dx.doi.org/10.14419/ijet.v7i3.31.18234.
Full textDissertations / Theses on the topic "Control vehicular"
Dadras, Soodeh. "Security of Vehicular Platooning." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7445.
Full textRuiz, de Somocurcio Salas Alvaro Enrique. "Control de Tráfico Vehicular Automatizado Utilizando Lógica Difusa." Bachelor's thesis, Universidad Ricardo Palma. Programa Cybertesis PERÚ, 2008. http://cybertesis.urp.edu.pe/urp/2008/ruiz_ae/html/index-frames.html.
Full textGoudarzi, Forough. "Non-cooperative beaconing control in vehicular ad hoc networks." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15608.
Full textBani, Younes Maram Younis Saleh. "Efficient Traffic Control Protocols for Vehicular Ad-Hoc Networks." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32060.
Full textGhias, Nezhad Omran Nima. "Power grid planning for vehicular demand: forecasting and decentralized control." IEEE Transactions on Smart Grid, 2014. http://hdl.handle.net/1993/23891.
Full textOctober 2014
Kalogiannis, Konstantinos. "Investigating Attacks on Vehicular Platooning and Cooperative Adaptive Cruise Control." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292951.
Full textSjälvkörande fordon är en framväxande teknologi med mål att ändra människors framtida inställning till mobilitet. Ett kritiskt steg mot målet är att försäkra sig om att aktörer med ont uppsåt inte kan orsaka olyckor som kan leda till skador eller dödsfall. För närvarande används fordonståg, alltså fordon som samarbetar för att minska bränsleförbrukning och öka körkomfort, i avgränsade miljöer med fokus på att anpassa dessa för verklig användning. Att garantera att fordonet kan köras tillsammans med andra enheter är då inte tillräckligt eftersom dessa system kan bli mål för externa och interna attacker som kan ha förödande konsekvenser. Denna uppsats fokuserar på det senare fallet och undersöker interna datafalsifierings- och frekvensstörningsattacker avsedda att destabilisera fordonståg i syfte att minska deras fördelar eller provocera fram en olycka. Dessa attacker är svåra att urskilja och inkluderar allt från enkla falsifikationsattacker till komplexa attacker som syftar till att kringgå specifika försvarsmekanismer. Med det i åtanke inriktar vi våra experiment mot de manövrar som är en del av fordonstågens grundfunktionalitet och krävs för deras nominella drift. Resultaten av arbetet visar att under fordonstågmanövrar så kan flertalet av de utvärderade attackerna orsaka olyckor och att attacker genom förfalskning av position var speciellt förödande. Vi har även påvisat att en fordonstågsledare med ont uppsåt utgör ett speciellt allvarligt hot mot fordonstågets funktionalitet på grund av dennes unika möjlighet att interagera med alla medlemmar. Attacker under manövrar har visats utgöra ett hot, inte bara mot stabiliteten av formationen, men även mot de grundläggande egenskaperna hos systemet själv såsom att isolera fordonståget från nya medlemmar.
Maslekar, Nitin. "Adaptive Traffic Signal Control System Based on Inter-Vehicular Communication." Rouen, 2011. http://www.theses.fr/2011ROUES046.
Full textMANZO, CRUZ FRANCISCO, and HERNÁNDEZ LUIS ARZATE. "Sistema de Semáforos Inteligentes para el Control de Tráfico Vehicular." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2019. http://hdl.handle.net/20.500.11799/99060.
Full textActualmente, el congestionamiento de tráfico vehicular es un problema que afecta directamente a los diferentes sectores de la población específicamente con pérdida de tiempo, obstrucción de avenidas por largas filas, acumulación de vehículos e incapacidad para definir la duración de viajes. En los últimos años los sistemas inteligentes han adquirido una gran trascendencia en el uso de tecnologías para la solución de problemas en zonas urbanas. Con ayuda de un sistema de semáforos inteligentes para el control de tráfico se puede disminuir considerablemente el congestionamiento en las intersecciones de avenidas que presentan una mayor afluencia vehicular. El desarrollo de un sistema de semáforos inteligentes para el control de tráfico vehicular es posible mediante la implementación de tecnologías que involucran técnicas de procesamiento de imágenes y visión artificial. Tecnologías de uso libre que permiten un desarrollo a bajo costo como “Python” (Lenguaje de programación) y librerías como “OPEN CV”. Las técnicas de visión artificial simulan la observación de los seres humanos.
Tusset, Ângelo Marcelo. "Controle ótimo aplicado em modelo de suspensão veicular não-linear controlada através de amortecedor magneto-reológico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/15395.
Full textThis work presents a proposal for control of vehicular suspension using the magneto-rheological damper, the proposed control is composed by association of two control strategy, the optimal control and the fuzzy control. The optimal control is used to determine the power to be applied by the magneto-rheological damper, and the fuzzy control is used to determine the electric current to be used in the magneto-rheological damper and is obtained considering the Mandani's model. For the fuzzy control two inputs are considered, the velocity of the piston's damper and the force provided by the optimal control, and one output, the electric current [A]. To demonstrate the efficiency of the proposed control, computational simulations are considered using a nonlinear mathematical model for a quarter-car. The performance of the control is analyzed considering excitements provoked by irregularities in the track, the irregularities are represented by entrances step type, pulse and sinusoidal. The computational simulations are performed using the Matlab® and the Simulink. The results of simulations show that the proposed control increases the vehicle security and improves the drive ability by reducing the vertical wheel displacement and the workspace to be used by the damper when compared to the passive system. It also helps with the comfort of passengers, reducing the bodywork oscillations, maintaining levels of accelerating below considered uncomfortable by standard BS 6841, 1987. To verify the behavior of the proposed control, in the face of uncertainty, computational simulations are carried out, considering the possibility of parametric errors. The simulations, show that the Optimal Control, even when subject to uncertainties, remains stable and optimal.
Giang, Anh Tuan. "Capacity of vehicular Ad-hoc NETwork." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-00989836.
Full textBooks on the topic "Control vehicular"
Status of the vehicular pollution control programme in India. Delhi: Central Pollution Control Board, Ministry of Environment & Forests, 2010.
Find full textIndia. Central Pollution Control Board. PR Division, ed. "Assessment of vehicular pollution problems due to devotees/tourists at religious/tourist places & development of vehicular pollution control & ambient air quality management plan" & Kumbh Mela, 2010: Peak & lean season : Haridwar & Mussoorie. Delhi: PR Division, Central Pollution Control Board, Ministry of Environment & Forests, 2012.
Find full textNicaragua. Ley no. 431: Ley para el régimen de circulación vehicular e infracciones de tránsito ; Decreto no. 32-97 : Reglamento general para el control de emisiones de los vehículos automotores de Nicaragua. Nicaragua: Editorial Jurídica, 2003.
Find full textauthor, Gordon-Harris Tory, ed. Vehiculos de emergencia. New York: Scholastic, 2013.
Find full textVernon, McDonald P., and Lyndon B. Johnson Space Center., eds. Multimodal perception and multicriterion control of nested systems: I. Coordination of postural control and vehicular control. Houston, Tex: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Find full textVernon, McDonald P., and Lyndon B. Johnson Space Center., eds. Multimodal perception and multicriterion control of nested systems: I. Coordination of postural control and vehicular control. Houston, Tex: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Find full textWassim, Najm, and John A. Volpe National Transportation Systems Center (U.S.), eds. Synthesis report: Examination of target vehicular crashes and potential ITS countermeasures. [Washington, D.C.]: National Highway Traffic Safety Administration, 1995.
Find full textKhare, Mukesh, and S. M. Shiva Nagendra. Artificial Neural Networks in Vehicular Pollution Modelling (Studies in Computational Intelligence). Springer, 2006.
Find full textParker, Philip M. The 2007-2012 World Outlook for Vehicular and Pedestrian Traffic Control Equipment and Electric Railway Signals. ICON Group International, Inc., 2006.
Find full textLimebeer, D. J. N., and Matteo Massaro. Dynamics and Optimal Control of Road Vehicles. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198825715.001.0001.
Full textBook chapters on the topic "Control vehicular"
Jovanović, Mihailo R. "Vehicular Chains." In Encyclopedia of Systems and Control, 1524–31. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_221.
Full textJovanović, Mihailo R. "Vehicular Chains." In Encyclopedia of Systems and Control, 1–10. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_221-1.
Full textJovanović, Mihailo R. "Vehicular Chains." In Encyclopedia of Systems and Control, 2418–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_221.
Full textStanica, Razvan, Emmanuel Chaput, and André-Luc Beylot. "Congestion Control for Safety VehicularAd HocNetworks." In Vehicular Networks, 1–38. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648759.ch1.
Full textHartong, Mark, Rajni Goel, and Duminda Wijesekera. "Security and Dependability in Train Control Systems." In Vehicular Networking, 129–48. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661314.ch6.
Full textBoussedjra, Mounir, Nitin Maslekar, Joseph Mouzna, and Houda Labiod. "Traffic Signal Control Systems and Car-to-Car Communications." In Vehicular Networks, 247–77. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648759.ch7.
Full textEmmelmann, Marc. "System Design and Proof-of-Concept Implementation of Seamless Handover Support for Communication-Based Train Control." In Vehicular Networking, 227–56. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661314.ch10.
Full textSmely, Dieter, Stefan Rührup, Robert K. Schmidt, John Kenney, and Katrin Sjöberg. "Decentralized Congestion Control Techniques for VANETs." In Vehicular ad hoc Networks, 165–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15497-8_6.
Full textAppaji, Impana, and P. Raviraj. "Vehicular Monitoring Using RFID." In Advances in Automation, Signal Processing, Instrumentation, and Control, 341–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_32.
Full textChen, Lei, Ping Cui, Yun Chen, Kailiang Zhang, and Yuan An. "Remote Vehicular Control Network Test Platform." In Simulation Tools and Techniques, 246–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72795-6_19.
Full textConference papers on the topic "Control vehicular"
Subramanian, Sundar, Marc Werner, Shihuan Liu, Jubin Jose, Radu Lupoaie, and Xinzhou Wu. "Congestion control for vehicular safety." In the ninth ACM international workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2307888.2307900.
Full textDelle Monache, M. L., J. Sprinkle, R. Vasudevan, and D. Work. "Autonomous vehicles: From vehicular control to traffic contro." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029535.
Full textWragge-Morley, Robert, Guido Herrmann, Phil Barber, and Stuart Burgess. "Information fusion for vehicular systems parameter estimation using an extended regressor in a finite time estimation algorithm." In 2014 UKACC International Conference on Control (CONTROL). IEEE, 2014. http://dx.doi.org/10.1109/control.2014.6915174.
Full textMartinec, Dan, and Zdenek Hurak. "Vehicular platooning experiments with LEGO MINDSTORMS NXT." In Control (MSC). IEEE, 2011. http://dx.doi.org/10.1109/cca.2011.6044393.
Full textAkinsanya, Akinsola, Manish Nair, Huiling Zhu, and Jiangzhou Wang. "Adaptive Power Control with Vehicular Trellis Architecture for Vehicular Communication Systems." In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020. http://dx.doi.org/10.1109/vtc2020-spring48590.2020.9129488.
Full textLazar, Silviu-Andrei, and Carmen-Elenea Stefan. "Future Vehicular networks: What control technologies?" In 2016 International Conference on Communications (COMM). IEEE, 2016. http://dx.doi.org/10.1109/iccomm.2016.7528203.
Full textMiroshnik and Lyamin. "Nonlinear control of multidrive vehicular robots." In Proceedings of IEEE International Conference on Control and Applications CCA-94. IEEE, 1994. http://dx.doi.org/10.1109/cca.1994.381246.
Full textTeng Liu, Alhussein A. Abouzeid, and A. Agung Julius. "Traffic flow control in vehicular communication networks." In 2017 American Control Conference (ACC). IEEE, 2017. http://dx.doi.org/10.23919/acc.2017.7963812.
Full textYue Liu, Jun Bi, and Ju Yang. "Research on Vehicular Ad Hoc Networks." In 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5192343.
Full textRamotsoela, T. D., and J. D. le Roux. "An offline autonomous vehicular actuator control system." In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, 2016. http://dx.doi.org/10.1109/indin.2016.7819343.
Full textReports on the topic "Control vehicular"
Lewis, P. S., and S. Ellis. Active noise and vibration control for vehicular applications. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/562543.
Full textPrévost, C., R. Fernandes, and F. Canisius. Ground control point acquisition for Acadia Forest, New Brunswick, during winter 2016, in support of Canada Centre for Mapping and Earth Observation snow depth from unmanned aerial vehicule activities. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/299101.
Full text