Dissertations / Theses on the topic 'Control with laser pulses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Control with laser pulses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hornung, Thomas. "Optimal control with ultrashort laser pulses." Diss., lmu, 2002. http://nbn-resolving.de/urn:nbn:de:bvb:19-2963.
Full textXu, Bingwei. "Control of multiphoton molecular excitation with shaped femtosecond laser pulses." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textPapastathopoulos, Evangelos. "Adaptive control of electronic excitation utilizing ultrafast laser pulses." Doctoral thesis, [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975015184.
Full textWalter, Dominik. "Adaptive control of ultrashort laser pulses for high-harmonic generation." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983790302.
Full textDeutschmann-Olek, Andreas [Verfasser]. "Modeling and Control of Optical Pulse Amplifiers for Ultra-Short Laser Pulses / Andreas Deutschmann-Olek." Düren : Shaker, 2021. http://d-nb.info/1233547895/34.
Full textRen, Qinghua. "Theoretical design of laser pulses for the control of molecular motion." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432731.
Full textHarper, Matthew R. "Control and measurement of ultrafast pulses for pump/probe-based metrology." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/430.
Full textGraham, Leigh. "Quantum control of laser induced dynamics of diatomic molecular ions using shaped intense ultrafast laser pulses." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602512.
Full textPatas, Alexander [Verfasser]. "Control of multiphoton processes by parametrically shaped ultrashort laser pulses / Alexander Patas." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1141678357/34.
Full textCoughlan, Matthew Anthony. "Controlling Light-Matter Interactions and Spatio-Temporal Properties of Ultrashort Laser Pulses." Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/186215.
Full textPh.D.
The SPECIFIC method a fast and accurate method for generating shaped femtosecond laser pulses. The femtosecond pulses are user specified from pulse parameters in the temporal domain. The measured spectral and recovered temporal phase and amplitudes from SEA TADPOLE are compared with the theoretical pulse profile from the user specified input. The SPECIFIC method has been shown to be a technique that can generate a diverse array of spectral/temporal phase and amplitude as well as polarization pulse shapes for numerous scientific applications. The spatio -temporal -spectral properties of focusing femtosecond laser pulses are studied for several pulse shapes that are important for non-linear spectroscopic studies. We have shown with scanning SEA TADPOLE that the spatio-spectral phase of focusing double pulse profile changes across the laterally across the beam profile. The spectral features of the sinusoidal spectral phase shaped pulse has been shown to tilt at with a changing angle away from the focus of the lens. Using spatio-spectral coupling, we have shown that multiple spatio-temporal foci can be generated along and perpendicular to the focusing direction of a femtosecond laser pulse. The spatial position of the spatio-temporal foci is controlled optically. Using sinusoidal spectral phase modulated pulse trains fragment ion production from Benzonitrile parent molecule can be controlled. A spectral transmission window perturbed the temporal pulse amplitudes resulting in fragment ion production dependant on spectral window position. The spectral window ion production was shown to also be dependant on temporal phase sequence.
Temple University--Theses
Saab, Mohamad Yehia. "Photochimie organique guidée par pulses laser : Applications : Benzopyrane et Pyrazine." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20014/document.
Full textThe ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection,has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use asix-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of thevibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists tocontrol the photoreactivity vs. photostability ratio (selectivity). In this work we present:(i) a pump-dump technique used tocontrol the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation inthe electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the firstadiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics
Mota, Alessandro Damiani. "Sistema eletrônico de controle para laser amarelo de aplicação oftalmológica com regime de operação contínuo e micro-pulsado." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-26042012-100723/.
Full textRecently, scientists have proposed a new technique for treating diseases related to the human retina, which is based on retinal laser discharges using pulse sequence around of 200 \'mü\'s, replacing the conventional treatment using long pulses around of 300 ms. The main advantage of the new technique is the conservation (without cell death) of the area exposed to the laser. This work presents the mechanisms adopted for the development of an electronic control system of a laser cavity at 586 nm for ophthalmic use, which aims to meet the protocol required by this recent technique. The protocol requires the formation of rapid pulses of laser, which makes the electronic control system response velocity of the laser cavity vital to the protocol. To meet the project requirements were implemented two current controllers in closed loop PI (proportional integrative controller) working synchronized, an optical power controller in closed loop PI, and auxiliary circuits for temperature control of the laser cavity. Software were implemented for two controls, a PI power, in order to make the control loop stable with the required response time, and a PI thermal control for elements of the laser cavity. Tests showed that the prototype met the design specifications, especially regarding the response time of rapid pulse, key point in obtaining the clinical protocol (FastPulse), that this work aims to meet. Additionally, the prototype was subjected to clinical trial on a patient, and the results demonstrated efficacy and no visible lesions were noticed on retina.
Jakob, Markus Alexander [Verfasser]. "Generation and Control of Ultrafast 10 um Laser Pulses for Driving Chemical Dynamics / Markus Alexander Jakob." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219475904/34.
Full textLomax, Andrew Martin. "Picosecond pulse control using semiconductor laser amplifiers." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333329.
Full textCORDEIRO, THIAGO da S. "Controle das características geométricas de nanopartículas de prata através da conformação temporal de pulsos ultracurtos utilizando algoritmos genéticos." reponame:Repositório Institucional do IPEN, 2013. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10550.
Full textMade available in DSpace on 2014-10-09T14:07:18Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Mančal, Tomáš. "Laser pulse control of dissipative dynamics in molecular systems." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=968759068.
Full textMancal, Tomas. "Laser pulse control of dissipative dynamics in molecular systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14895.
Full textThis work is dedicated to a further development of the density matrix theory and its application to the study of ultrafast laser pulse induced dynamics in molecular systems interacting with a thermal environment. Two topics are considered, first the so-called memory effects are analyzed which result from a reduced description of the molecular system excluding the environmental degrees of freedom. And secondly, the laser pulse control of dissipative molecular dynamics is examined. The theoretical description of open quantum systems results in a time non-local equation of motion so that the evolution of the molecular system depends on its past. In this work a numerical method to solve the time non-local equations of motion has been developed and tested for a minimal model of a polyatomic molecule subject to the dissipative influence of an environment. An analytical solution of the equation of motion for the special case of very long standing memory is also achieved. To identify signatures of such memory effects in general case we compare this analytical solution with numerical calculations involving memory and with approximative computations ignoring time non-locality. For the excitation by a laser pulse shorter than the duration of the memory the molecular systems exhibit noticeably different dynamics than for the absence of the memory. The effects become significantly more pronounced with decreasing laser pulse durations. The second part of the work concentrates on the application of the optimal control theory to guide molecular dynamics. Optimal control theory provides laser pulses which are designed in such a manner to fulfill certain control tasks, e.g. the population of a desired vibrational level of the molecular system or the placement of a wavepacket on a prescribed position on the molecular potential energy surface. As a first example the control of the dissipative photo-induced electron transfer in a donor--bridge--acceptor systems has been particularly considered ignoring the memory. The controllability of the electron transfer has been discussed and the mechanism by which it becomes possible has been identified. We have found the control of electron transfer reactions feasible even under the influence of dissipation although the yield of the control decreases drastically with increasing dissipation. In the presence of dissipation mechanism of the control has been found to change. The feasibility of the reproduction of the control pulses resulting for the optimal control theory in the experiment has been discussed and methods have been presented how to check the efficiency of the reproduction of optimal control pulses by liquid crystal pulse shapers, prevailingly used in modern control experiments. To distinguish different control tasks a quantitative measure has been introduced characterizing complexity of the control task. The optimal control theory has also been formulated for molecular systems showing static disorder and applied on an ensemble of molecules exhibiting random orientations. Finally, the importance of memory effects for the control of dissipative dynamics has been discussed and the optimal control theory has been formulated to account for a time non-locality in the equation of motion for molecular systems.
Schwarz, Christoph Benjamin [Verfasser], Tobias [Gutachter] Brixner, and Sven [Gutachter] Höfling. "Full vector-field control of femtosecond laser pulses with an improved optical design / Christoph Benjamin Schwarz ; Gutachter: Tobias Brixner, Sven Höfling." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1123957738/34.
Full textElghobashi, Nadia. "Theory of using few cycle IR and UV laser pulses to control the orientation and selective dissociation of hydrogen bonded anions." [S.l.] : [s.n.], 2005. http://www.diss.fu-berlin.de/2006/23/index.html.
Full textCruz, Vinícius Vaz da. "Dinâmica nuclear dependente do tempo do espalhamento colinear H + HCl sob excitação por pulsos de laser na região do infravermelho." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/5176.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-01T08:06:56Z (GMT) No. of bitstreams: 2 Dissertação - Vinícius Vaz da Cruz - 2015.pdf: 2292478 bytes, checksum: 170721177f0dc0267e59c8d54868ae20 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-02-01T08:06:56Z (GMT). No. of bitstreams: 2 Dissertação - Vinícius Vaz da Cruz - 2015.pdf: 2292478 bytes, checksum: 170721177f0dc0267e59c8d54868ae20 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-08-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This dissertation presents a wavepacket simulation study of the H + HCl collinear reaction when the HCl molecule is initially prepared by an infrared laser pulse in a coherent superposition of vibrational states. A detailed discussion of wavepacket motion, reactive flux and reaction probabilities as function of the superposition state parameters is presented. We apply the flux formalism to derive an analytical expression for the reaction probabilities, which is then used to analyse our numerical simulations. The results show a strong phase dependence of the reaction probabilities, as well as the spatial distribution of the reactant molecules. The full reaction probability surface is computed for two average collision energies, and the enhancement and suppression of the H+HCl!H2+Cl reaction channel is discussed in terms of the surface’s critical points.
Esta dissertação apresenta o estudo por meio de simulações de pacote de ondas das colisões colineares H + HCl quando a molécula de HCl é preparada por pulsos de laser de infravermelho em uma superposição de níveis vibracionais. É feita uma discussão detalhada do movimento do pacote de ondas, fluxo reativo e probabilidades de reação em termos dos parâmetros da superposição de estados. Nós aplicamos o formalismo de fluxo para deduzir uma expressão analítica para as probabilidades de reação, a qual é então utilizada na análise de nossas simulações numéricas. Os resultados mostram uma grande dependência das probabilidades de reação com a fase e com a distribuição espacial das moléculas reagentes. A superfície completa de probabilidade de reação é calculada para duas energias de colisão médias, e as condições de melhora e supressão da reação H+HCl!H2+Cl é discutida em termos dos pontos críticos da superfície.
Barth, Ingo [Verfasser]. "Quantum control of electron and nuclear circulations, ring currents, and induced magnetic fields in atoms, ions, and molecules by circularly polarized laser pulses / Ingo Barth." Berlin : Freie Universität Berlin, 2009. http://d-nb.info/1023663929/34.
Full textWilkenson, Wade F. "A theory for optical wavelength control in short pulse free electron laser oscillators." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA271706.
Full textSchirrmeister, Dirk. "Zur Theorie photoinduzierter Dynamik offener Molekularsysteme: Kontrolle von Dissipation durch ultrakurze Laser-Pulse." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 1998. http://dx.doi.org/10.18452/14380.
Full textabstract in PostScript This thesis investigates the influence of intense and ultrashort laser pulses on the photoinduced dynamics of open molecular systems. The excitation of a molecule by an optical ultrashort laser pulse induces transitions between different electronic states. This excitation process is accompanied by the dissipative processes of energy and vibrational relaxation. This excitation process is described within the method of the density matrix theory. Thereby, the derivation of the quantum master equation in the framework of the projection operator formalism demonstrates that the external fields are present in the reversible part of the equation of motion and also exert an indirect influence by acting on the dissipation superoperator which accounts for dissipation. In this thesis the field--dependency of the dissipation superoperator which is induced by the external fields is considered for the first time. By a representation of the quantum master equation in the Floquet picture, an interpretation of this field--dependent effect can be given: the frequency--dependent spectral density of the environmental modes which describe dissipation is determined at different field--dependent frequencies. Analytical investigations for the two level system demonstrate that the field dependence becomes relevant if the pulse length is comparable with the time scale on which the autocorrelation function of the environmental degrees of freedom decays.To investigate the influence on experimental quantities, a two--color pump--probe experiment for the laser dye molecule IR 125 is considered for which the spectrally and temporally resolved transmission on a femtosecond and picosecond time scale has been measured. Within the model of one effective vibrational mode the experimental data is fitted. The standard Redfield theory is used to provide a reference model. A high degree of concurrence between the theory and the results of the experiment is achieved. The exact treatment of internal conversion between the excited electronic states leads to a rise in transmission within one picosecond. It is necessary to solve the density matrix equations exactly because a comparative investigation with the nonlinear susceptibility of third order leads to a clear viation from the exact result. Starting from the reference case of field--independent dissipation, the field--dependency of the relaxation rates is determined and the influence on observables for example the relative transmission is investigated. The analytical results show that the field--dependent effect is strongest if the pulse length becomes smaller than the correlation time of the environmental modes and if the acting fields are sufficiently strong. Thereby, a control of dissipation becomes possible. An influence of the field--dependent effect on experimental observables is predicted.
Montgomery, Matthew A. "Understanding adaptive laser pulse-shaping control of two-photon emission and second harmonic generation." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337186.
Full textOlle, Vojtech Filip. "Short pulse generation and automated control in quantum well and quantum dot laser diodes." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610420.
Full textRuotsalainen, T. (Tarmo). "Integrated receiver channel circuits and structures for a pulsed time-of-flight laser radar." Doctoral thesis, University of Oulu, 1999. http://urn.fi/urn:isbn:9514252160.
Full textZeng, Shuo. "Understanding diatomic molecular dynamics triggered by a few-cycle pulse." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19165.
Full textPhysics
Brett D. Esry
In strong field physics, complex atomic and molecular motions can be triggered and steered by an ultrashort strong field. With a given pulse as an carrier-envelope form, E(t) = E₀(t) cos(ωt + φ), we established our photon-phase formalism to decompose the solution of a time-dependent Schrödinger equation in terms of photons. This formalism is further implemented into a general analysis scheme that allows extract photon information direct from the numerical solution. The φ-dependence of any observables then can be understood universally as an interference effect of different photon channels. With this established, we choose the benchmark system H₂⁺ to numerically study its response to an intense few-cycle pulse. This approach helps us identify electronic, rovibrational transitions in terms of photon channels, allowing one to discuss photons in the strong field phenomena quantitatively. Furthermore, the dissociation pathways are visualized in our numerical calculations, which help predicting the outcome of dissociation. Guided by this photon picture, we explored the dissociation in a linearly polarized pulse of longer wavelengths (compared to the 800 nm of standard Ti:Saphire laser). We successfully identified strong post-pulse alignment of the dissociative fragments and found out that such alignment exists even for heavy molecules. More significant spatial asymmetry is confirmed in the longer wavelength regime, because dissociation is no longer dominated by a single photon process and hence allowed for richer interference. Besides, quantitative comparison between theory and experiment have been conducted seeking beyond the qualitative features. The discrepancy caused by different experimental inputs allows us to examine the assumptions made in the experiment. We also extend numerical studies to the dissociative ionization of H₂ by modeling the ionization.
Raith, Philipp Nils [Verfasser], and Thomas [Akademischer Betreuer] Pfeifer. "Few-Cycle Multidimensional Laser Control of Attosecond Pulse Generation / Philipp Nils Raith ; Betreuer: Thomas Pfeifer." Heidelberg : Universitätsbibliothek Heidelberg, 2012. http://d-nb.info/1177039893/34.
Full textSingh, Pooja. "Quantum Coherent Control and Propagation in Lambda System." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849750/.
Full textAltinok, Yahya Kemal. "Simulation And Performance Evaluation Of A Fast And High Power Pulsed Laser Diode Driver For Laser Range Finder." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614346/index.pdf.
Full texts pulse width and frequencies ranging from 20Hz to 40Hz. It provides current pulses for two LD arrays controlled with a proportional-integral (PI) controller and protect LDs against overcurrents and overvoltages. The proposed current control in the thesis reduces current regulation to less than 1% and diminishes overshoots and undershoots to a value less than 1% of steady-state value, which improves safe operation of LDs. Moreover, protection functions proposed in the thesis are able to detect any failure in driver and interrupt LD firing immediately, which guarantees safe operation of LDs.
Ren, Lan. "Integrated process planning for a hybrid manufacturing system." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Ren_09007dcc8046714a.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 18, 2008) Includes bibliographical references.
Limbach, Christopher M. "Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications." Thesis, Princeton University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3737448.
Full textThe non-resonant heating of gases by laser irradiation and plasma formation has been under investigation since the development of 100 megawatt peak power, Q-switched, nanosecond pulse duration lasers and the commensurate discovery of laser air sparks. More recently, advances in mode-locking and chirped pulse amplification have led to commercially available 100 gigawatt peak power, femtosecond pulse duration lasers with a rapidly increasing number of applications including remote sensing, laser spectroscopy, aerodynamic flow control, and molecular tagging velocimetry and thermometry diagnostics. This work investigates local energy deposition and gas heating produced by focused, non-resonant, nanosecond and femtosecond laser pulses in the context of flow control and laser diagnostic applications.
Three types of pulse configurations were examined: single nanosecond pulses, single femtosecond pulses and a dual pulse approach whereby a femtosecond pre-ionizing pulse is followed by a nanosecond pulse. For each pulse configuration, optical and laser diagnostic techniques were applied in order to qualitatively and quantitatively measure the plasmadynamic and hydrodynamic processes accompanying laser energy deposition. Time resolved imaging of optical emission from the plasma and excited species was used to qualitatively examine the morphology and decay of the excited gas. Additionally, Thomson scattering and Rayleigh scattering diagnostics were applied towards measurements of electron temperature, electron density, gas temperature and gas density.
Gas heating by nanosecond and dual pulse laser plasmas was found to be considerably more intense than femtosecond plasmas, irrespective of pressure, while the dual pulse approach provided substantially more controllability than nanosecond pulses alone. In comparison, measurements of femtosecond laser heating showed a strong and nonlinearly dependence on focusing strength. With comparable pulse energy, measurements of maximum temperature rise ranged from 50K to 2000K for 500mm and 175mm focal length lenses, respectively. Experiments with various lens and pulse energy combinations indicated an important connection between gas heating and the phenomena of intensity clamping and self-guiding. The long-term behavior of the heated region varied considerably among pulse configurations. However, in each case, the formation of a toroidal vortex could be suppressed or enhanced depending on the variables of pressure, focusing and pulse energy.
Laurens, Gaétan. "Laser generation of nanoparticles in liquids : new insights on crystal structure control and colloidal stability." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1161/document.
Full textLaser generation of nanoparticles in liquids : new insights on crystal structure control and colloidal stability The great interest of nanoparticles for their original physical and an chemical properties has been supported by the development of numerous methods of synthesis. In the nineties, laser generation of nanoparticles in liquids appeared, including Pulsed Laser Ablation in Liquids (PLAL). The PLAL technique enables to produce surface free particles for plenty of material and solvent combinations. However, the apparent simplicity of its implementation hides complex physico-chemical mechanisms resulting in a lack of control of the final products. We firstly investigated the dynamics of the laser-generated bubbles for which the PLAL extreme conditions present new studied cases of bubbles dynamics not encountered in the field of fluid mechanics. Then, we aim to bring new insights into better control of the nanoparticles morphology and their colloidal stability. A straight way to tune sizes, crystal structures and the colloidal stability consists in the addition of stabilizing agents. Hence, we investigated the mechanisms of stabilization of colloidal gold using complexing ions. We also succeed to synthesis nano-rubies, i.e. chromium doped corundum alumina nanoparticles, unexpected at nanoscale. The stabilization of the metastable crystal structure using ligands is explained thanks to a comprehensive theoretical approach
Zahradník, Martin. "Dynamic control of magnetization for spintronic applications studied by magneto-optical methods." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS155/document.
Full textTwo important mechanisms in preparation of ultrathin films of magnetic oxides were systematically investigated in this work. First, influence of epitaxial strain on resulting magneto-optical properties of La₂/₃Sr₁/₃MnO₃ (LSMO) ultrathin films was studied. The investigated films were grown by pulsed laser deposition on four different substrates, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to the unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements confirmed presence of two previously reported electronic transitions in spectra of all films. Moreover, they revealed another electronic transition around 4.3 eV only in spectra of films grown under compressive strain. We proposed classification of this transition as crystal field paramagnetic Mn t2g → eg transition, which was further supported by ab initio calculations. A key role of strain in controlling electronic structure of ultrathin perovskite films was demonstrated. Dynamic application of strain via use of piezoelectric underlayer remained inconclusive, requiring further improvement of the strain transfer from the piezoelectric layer into the LSMO. Second, influence of substrate miscut on magnetization dynamics in SrRuO₃ (SRO) was studied. As expected we found that high miscut angle leads to suppression of multi-variant growth. By means of magnetic force microscopy we showed that presence of multiple SRO variants leads to higher density of defects acting as pinning or nucleation sites for the magnetic domains, which consequently results in deterioration of magnetic properties. We demonstrated that use of vicinal substrate with high miscut angle is important for fabrication of high quality SRO ultrathin films with low density of crystallographic defects and excellent magnetic properties
Pistore, Valentino. "Modelocking of THz quantum cascade lasers : dispersion control and non-linearities." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS302.pdf.
Full textTHz QCLs are nowadays considered a promising platform for the generation of intense and ultrashort THz pulses. Owing to their fast gain recovery time, passive modelocking of THz QCLs has so far proved to be difficult. On the contrary, active modelocking with a microwave modulation has been successfully applied. The pulse duration, however, has been arduous to reduce despite years of research. In 2017, THz pulses as short as 4ps have been generated by our group with the application of an integrated structure (a GTI) aiming to reduce the chromatic dispersion. The research in this thesis starts from this point.In particular, I present dispersion engineering in THz QCLs in order to obtain very short pulses even from relatively narrow-band devices. This is achieved using proven active modulation methods that can tune the QCL emission from high to low dispersion regimes. I also show that THz QCLs can present a strong amplitude modulation of their emission profile and that they can spontaneously emit pulses as a result of a self-locking mechanism, contrary to the expected frequency modulated response. As a consequence, this indicates that the fast gain recovery time is not a limiting factor for the generation of pulses. I also show this passive self-locking scheme for passive pulse generation in the framework of the first demonstrations of harmonic modelocking of THz QCLs. Finally, a new phenomenon is presented where the modes of a free running THz QCL can beat together to generate free space microwave emission
Weng, Xiaorong. "Epitaxial CoxNi1-x nanowires in SrTiO3 matrix : growth, structure and control of magnetic anisotropy." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS418.
Full textThis thesis describes the study of self-assembled epitaxial ferromagnetic CoxNi1-x nanowires in SrTiO3 matrix. This system is grown by pulsed laser deposition. Taking advantage of the sequential deposition of wires and matrix, the diameter of nanowires is controlled in the 1.7-5.3 nm range. Due to the lattice mismatch between wires and matrix, nanowires are in tensile axial strain. The strain decreases with increasing diameter and is in the 2-4% range. Large strain is thus achieved in this vertically aligned nanocomposite structure. The total magnetic anisotropy of the nanowires reflects the competition of the magnetostatic and magnetoelastic anisotropies. The magnetostatic effect favors an easy magnetization axis along the wire axis. The magnetoelastic contribution introduced by the tensile strain depends on the magnetostriction constant and the strain. It is uniaxial, negative for Ni and positive for Co concentration of about 20% and above. Under a strain larger than 0.8%, the magnetoelastic anisotropy dominates in magnitude the magnetostatic one, leading the wire axis to be a hard magnetization axis for Ni. For CoNi alloy nanowires, the large strain reinforces the easy character of the wire axis. This results in the enhancement of the blocking temperature over room temperature, indicating the increased thermal stability of magnetization. A spectroscopic study of the spin and orbital magnetic moments evidences the fact that the anisotropy of the orbital moment can be correlated with the magnetoelastic anisotropy. The control of the magnetic anisotropy by the strain or the diameter is a good starting point for the construction of 3D nanomagnetic structures
Zier, Tobias [Verfasser]. "Ab-initio analysis of the structural response of solids after femtosecond-laser-pulse excitation : From understanding towards control / Tobias Zier." Kassel : Universitätsbibliothek Kassel, 2019. http://d-nb.info/1193090164/34.
Full textSchönenberger, Norbert [Verfasser], Peter [Akademischer Betreuer] Hommelhoff, and Philip [Gutachter] Russell. "Control of free electrons with ultrafast laser pulses:Generation of attosecond electron pulse trains / Norbert Schönenberger ; Gutachter: Philip Russell ; Betreuer: Peter Hommelhoff." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1239898436/34.
Full textDe, Clercq Ludwig Erasmus. "Numerical modelling of the excitation of polyatomic molecules by femtosecond laser beams." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6522.
Full textENGLISH ABSTRACT: The selective excitation of an arbitrary vibrational level of a polyatomic molecule, without passage through an intermediary electronic excited state is demonstrated. This was achieved by simulating the interaction of a shaped, femtosecond pulse with one vibrational mode of the molecule. The carrier frequency of the pulse is chosen near resonant to the ground-to- rst-excited vibrational transition of the mode, and the pulse shape is optimized via closed-loop feedback. The simulation concentrates on the rst few vibrationally excited states since the density of states is still low, thus ensuring that the inter-vibrational decoherence time is relatively long compared to the pulse length. While various molecules were investigated this study focuses onUF6 for which detailed spectroscopic data for the v3 vibrational mode is available in literature. A multilevel model was developed and can be adapted for any number of levels. The model reported here was limited to a vibrational quantum number of four. The spectroscopic data included anharmonic splitting as well as forbidden transitions. The effect of rotational levels was not included. A density matrix approach was followed because this will allow for the introduction of dephasing of the coherent excitation via thermalizing collisions with the reservoir, as well as inter-vibrational relaxation. The time evolution of the density matrix is given by the Von Neumann equations.
AFRIKAANSE OPSOMMING: Die selektiewe opwekking van 'n arbitrêre vibrasionele vlak van 'n poliatomies molekule sonder oorgang na 'n intermediëre elektroniese opgewekte toetstand word gedemonstreer. Dit was bereik deur die interaksie te simuleer van 'n gevormde, femtosekonde pulse met een vibrasionele mode van 'n molekule. Die draer frekwensie van die pulse is so gekies dat dit naby resonansie van die grond-tot-eerste-opgewekte vibrasionele oorgang van die mode is, die puls vorm word geoptimeer deur 'n geslote-lus terugvoer. Die simulasie konsentreer op die eerste paar vibrasionele opgewekte toestande, omdat die digtheid van toestande nog steeds laag is, dus verseker dit dat inter-vibrasionele de-koherensie tyd relatief lank is in vergelyking met die puls se lengte. Verskillende molekules was ondersoek vir die studie. Die fokus is op UF6 waarvoor gedetaileerde spektroskopiese data vir die v3 vibrasionele beskikbaar is in die literatuur. 'n Multivlak model was ontwikkel en kan aangepas word vir enige aantal van vlakke. Die model wat hier aangemeld is, is beperk tot die vibrasionele kwantum getal van vier. Die spektroskopiese data het anharmonies splitting so wel as nie toegelaatbare oorgange bevat. Die effek van rotasionele vlakke was nie in berekening geneem nie. 'n Digtheids matriks benadering was gevolg, omdat dit toelaat vir die dekoherensie. Die tyd evolusie van die digtheids matriks word gegee deur die Von Neumann vergelykings.
Ohnesorge, Alexander. "Bestimmung des Aufmischungsgrades beim Laser-Pulver-Auftragschweißen mittels laserinduzierter Plasmaspektroskopie (LIPS)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1233310151669-10595.
Full textOhnesorge, Alexander. "Bestimmung des Aufmischungsgrades beim Laser-Pulver-Auftragschweißen mittels laserinduzierter Plasmaspektroskopie (LIPS)." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23904.
Full textBensch, Hauke Magnus [Verfasser]. "Kontrolle der Pulsdynamik in modengekoppelten Hochenergie-Festkörperlasern : Control of the pulse-dynamics of a mode-locked high energy solid state laser / Hauke Magnus Bensch." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1172414513/34.
Full textAkkal, Elzem. "Control Actuation Systems And Seeker Units Of An Air-to-surface Guided Munition." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1028430/index.pdf.
Full textASGM&rdquo
and &ldquo
improved ASGM&rdquo
and the superiority of the new design is demonstrated.
Komashko, Aleksey Mikhaylovich. "Laser-material interaction of powerful ultrashort laser pulses /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Full textDooley, Patrick W. Corkum Paul B. "Molecular imaging using femtosecond laser pulses." *McMaster only, 2003.
Find full textGuay, Jean-Michel. "Metal Colorization Using Picosecond Laser Pulses." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38894.
Full textKafka, Kyle R. P. "Laser-Induced Damage with Femtosecond Pulses." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483661596059632.
Full textGonon, Benjamin. "Simulations quantiques non-adiabatiques d’un photo-interrupteur moléculaire vers un dialogue expérience-théorie." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT186/document.
Full textThis thesis adresses the study and control of the photo-reactivity of molecular switches, here the photo-isomerisation of spiropyrans. This theoretical work has been achieved in close collaboration with the experimental team PFL within the ICB in Dijon. Non-adiabatic quantum dynamics simulations were carried out so as to reproduce and rationalise the experimental results from time-resolved transient absorption spectroscopy. Such experiments have demonstrated ultra-fast photo-reactivity (~ 100 fs) following excitation by an ultra-short LASER pulse. It is interpreted as an internal conversion mechanism between the first singlet excited eletronic state and the ground state via a conical intersection. The theoretical study used the ring-opening reaction of benzopyran as a model. Developments were made regarding: (1) The exploration of the reaction mechanism and the computation of potential energy surfaces with perturbative, post-CASSCF quantum chemistry methods (XMCQDPT2). This investigation showed that results changed significantly compared to those reported in the literature with lower-level calculations. (2) The generation of a diabatic Hamiltonian based on ab initio XMCQDPT2 data. Owing to the significant anharmonicity in the ground electronic state, we designed a new effective approach, quite different from the previous studies. (3) The production of non-adiabatic quantum dynamics simulations using the MCTDH method. The results thus obtained are in excellent agreement with the experimental ones. Including explicitly the LASER pulse allowed us to reproduce and rationalise the action of pulse shaping on control observed in experiments. The present work thus made possible the succesful implementation of a theoretical/experimental collaboration
Kröner, Dominik (Dr rer nat ). "Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy." Thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7047/.
Full textDie Habilitationsschrift behandelt theoretische Untersuchungen von durch Licht ausgelösten Prozessen in Molekülen. Der Schwerpunkt liegt dabei auf Veränderungen in der Elektronenstruktur und der Geometrie der Moleküle, die durch Bestrahlung mit Licht entweder bei einer spektroskopischen Untersuchung oder bei gezielter Kontrolle durch geformte Laserpulse herbeigeführt werden. Um die dabei auftretende Elektronen- und Kerndynamik zu simulieren, wurden vornehmlich quantentheoretische Methoden eingesetzt und weiterentwickelt. Die wissenschaftlichen Fragestellungen beschäftigen sich mit dem gezielten Verändern und dem Erkennen der räumlichen Struktur von Molekülen ohne Drehspiegelachse, der sog. molekularen Chiralität, sowie mit durch Licht eingeleiteten Prozessen in biologisch relevanten Pigmenten auf sehr kurzen Zeitskalen. Die entwickelten Ansätze und gewonnenen Erkenntnisse lassen sich drei Haupterfolge unterteilen: Erstens gelang die Entwicklung einer generellen Kontrolltheorie für das Ein- und Umschalten von molekularer Chiralität mit geformten Laserpulsen. Dabei wird die räumliche Struktur der vorgeschlagenen molekularen Schalter zwischen ihren stabilen sog. stereoisomeren Formen selektiv geändert, was sich auf ihre optischen und chemischen Eigenschaften auswirkt. Für komplexere Bedingungen, wie z.B. auf einer Oberfläche verankerten molekularen Schaltern verschiedener Orientierung, wurde eine neue Pulsoptimierungsmethode basierend auf Wahrscheinlichkeiten und Statistik entwickelt. Solche laserpulskontrollierten chiralen molekularen Schalter hofft man u.a. in der Nanotechnologie zum Einsatz zu bringen, wo sie z.B. als Informationsspeicher dienen könnten. Zweitens konnte geklärt werden, welche die wesentlichen Einflüsse sind, die das Erkennen von sog. Enantiomeren, das sind spiegelbildliche Moleküle von entgegengesetzter Chiralität, nach Ionisierung durch ultrakurze zirkular polarisierte Laserpulse ermöglichen. Diese Form des sog. Zirkulardichroismus in der Ionenausbeute erlaubt die quantitative und qualitative Unterscheidung von Enantiomeren in der Massenspektrometrie. Durch Simulation der Elektronendynamik während der Laseranregung konnte u.a. erstmals gezeigt werden, dass neben der Zirkularpolarisation der Laserpulse vor allem die schwachen magnetischen Wechselwirkungen für die Unterscheidung entscheidend sind. Drittens wurden die Spektren von in der Natur vorkommenden Pigmenten simuliert, welche u.a. an wichtigen biologischen Funktionen, wie dem Sammeln von Sonnenenergie für die Photosynthese, beteiligt sind. Die Lichtanregung führt dabei zu einer Veränderung der Elektronenstruktur und Geometrie der Pigmente, wobei letzteres wichtige Konsequenzen für die Verteilung der Energie auf die spektroskopisch beobachteten Molekülschwingungen mit sich bringen. Auch der wichtige Einfluss der biochemischen Umgebung auf die Elektronenstruktur der Pigmente bzw. den Energietransfer zwischen solchen wurde untersucht. Neben der Klärung experimenteller Ergebnisse ermöglichen die Untersuchungen neue Einblicke in die fundamentalen Prozesse kurz nach der Lichtanregung -- Erkenntnisse, die auch für die technische Nachahmung der biologischen Funktionen von Bedeutung sein können.
Loeser, Markus. "Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232571.
Full text