To see the other types of publications on this topic, follow the link: Controlled assembly.

Dissertations / Theses on the topic 'Controlled assembly'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Controlled assembly.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dillenback, Lisa M. Keating Christine Dolan. "Self-assembly and controlled assembly of nanoparticles." [University Park, Pa.] : Pennsylvania State University, 2008. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-2613/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pakstis, Lisa M. "Controlled self-assembly of amphiphilic diblock copolypeptides." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 14.66 Mb., 139 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Topan, Engin. "An Approximate Model For Kanban Controlled Assembly Systems." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606438/index.pdf.

Full text
Abstract:
In this thesis, an approximation is proposed to evaluate the steady-state performance of kanban controlled assembly systems. The approximation is developed for the systems with two components making up an assembly. Then, it is extended to systems with more than two components. A continuous-time Markov model is aggregated keeping the model exact, and this aggregate model is approximated replacing some state-dependent transition rates with constant rates. Decomposition of the approximate aggregate model into submodels guarantees product-form steady-state distribution for each subsystem. Finally, submodels are combined in such a way that the size of the problem becomes independent of the number of kanbans. This brings about the computational advantage in solving the combined model using numerical matrix-geometric solution algorithms. Based on the numerical comparisons with simulation, the exact model, an approximate aggregate model and another approximation in a previous study in the literature, the approximation is observed to be good in terms of accuracy with respect to computational burden and has the potential to be a building block for the analysis of systems that are more complex but closer to real-life applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiong, Xiaorong. "Controlled multi-batch self-assembly of micro devices /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Twomey, Megan. "Conjugated Polymer-Based Biomaterials Through Controlled Self-Assembly." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2452.

Full text
Abstract:
Synthetic polymeric materials have gained significant use as biological materials (biomaterials) in biomedical and pharmaceutical applications. As a result, a demand for well-defined polymers with tunable properties has emerged. The synthetic versatility of polymeric biomaterials allows the opportunity to understand the structure-property relationship of materials and their cellular interactions. A novel class of polymeric biomaterials are conjugated polymers (CPs), which possess desirable physicochemical and excellent photophysical properties, including inherent fluorescence. The synthetic versatility of CPs allows easy modification of the conjugated backbone to tune emission and side chain structures to adjust biocompatibility through increased water solubility, controlled biodegradability, and incorporation of targeting units. The aim of this dissertation is to better understand conjugated polymer nanoparticle (CPN) structure and self-assembly in an aqueous environment, and how those structural features affect cellular interactions to establish a structure-function relationship. This work presents the fabrication of several different CPNs for cancer cell targeting and labelling, and differentiation of biologically important molecules. Core−shell nanoparticles were prepared using a semi-flexible cationic CPN complexed with hyaluronic acid (HA), a polyanion. The resulting CPNs exhibited high cancer cell specificity with low adsorption to normal cells, as a result of HA’s affinity towards overexpressed receptors on cancer cell surface. A systematic investigation on the aggregation properties of CPNs that vary by side chain and backbone structures in response to different biologically important anionic polysaccharides in a complex biological medium was conducted. Mitochondria-specific CPNs were fabricated from a semi-flexible CPN modified with the mitochondrial-targeting triphenylphosphonium (TPP) group. The subcellular localization and cellular toxicity were dependent on backbone flexibility, hydrophilicity, and molecular weight. Dual-targeting CPNs grafted with folic acid (FA) side chains and complexed with hyaluronic acid (HA) were fabricated for improved uptake and bioimaging of cancer cells. The work presented here shows how modifications to CPN backbone and side chain structures modulate their cellular interactions. The physicochemical and biophysical properties of CPNs affect biocompatibility and understanding those properties will lead to the development of novel CP-based biomaterials.
APA, Harvard, Vancouver, ISO, and other styles
6

Arai, Nozomi. "Self-Assembly of Colloidal Particles with Controlled Interaction Forces." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmelzeisen, Marcus [Verfasser]. "Individual plasmonic nanogaps : controlled assembly and detailed investigation / Marcus Schmelzeisen." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1021251828/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drangsholt, Finn. "The applicability of demand controlled ventilating systems for assembly halls /." Online version, 1992. http://bibpurl.oclc.org/web/29597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kitao, Takashi. "Controlled Assembly Structures of Conjugated Polymers Mediated by Coordination Nanospaces." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Karoui, Badreddine. "Active force-controlled part assembling for a robotic assembly cell." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/5462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Bo. "Crafting ordered structures of nanomaterials via flow-enabled self-assembly (FESA) and controlled evaporative self-assembly (CESA)." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53538.

Full text
Abstract:
The use of spontaneous self-assembly as a lithography free means to construct well-ordered, often intriguing structures has received much attention for its ease of producing complex, centimeter-scale structures with small feature sizes. These self-organized structures promise new opportunities for developing miniaturized optical, electronic, optoelectronic, and magnetic devices. One extremely simple route to intriguing structures is the evaporative self-assembly of nonvolatile solutes from a sessile droplet on a solid substrate. However, flow instabilities during the evaporation process often result in non-equilibrium and irregular dissipative structures (e.g., randomly organized convection patterns, stochastically distributed multi-rings, etc.). Therefore, in order to fully control the evaporative self-assembly of solutes, two strategies, namely, controlled evaporative self-assembly (CESA) and flow-enabled evaporative-induced self-assembly (FESA) were developed to create ordered structures of various nanomaterials. First, hierarchical assemblies of amphiphilic diblock copolymer (i.e., polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP)) micelles were crafted by FESA. The periodic threads comprising a monolayer or a bilayer of PS-b-P4VP micelles were precisely positioned and patterned over large areas. Second, highly aligned parallel DNA nanowires in the forms of nanostructured spokes over a macroscopic area were created via evaporative self-assembly (CESA) by subjecting DNA aqueous solution to evaporate in a curve-on-flat geometry composed of a spherical on a flat substrate. Third, large-scale aligned metallic nanowires templated by highly oriented DNA were produced by flow-enabled self-assembly (FESA). A simple yet robust swelling-induced transfer printing (SIT-Printing) technique was developed to transfer ultralong DNA nanowires onto the desirable substrate. Subsequently, the resulting DNA nanowires were exploited as templates to form metallic nanowires by exposing DNA nanowires preloaded with metal salts under oxygen plasma. Moreover, DNA nanowires were also employed as scaffold for aligning metal nanoparticles and nanorods. Fourth, colloidal microchannels (i.e., cracks) on a large scale were yielded by fully controlling the drying process of colloidal suspensions via flow-enabled self-assembly (FESA). The influence of chemically patterned substrate (i.e., hydrophobic stripes on a hydrophilic substrate) on the formation of colloidal microchannels was explored. In addition, such colloidal microchannels with tunable center-to-center distance between the adjacent cracks, λ_(c-c) was exploited as template for aligning inorganic nanoparticles. Importantly, theoretical study of the formation mechanism of parallel stripes of solutes by FESA was conducted. The relationship between the characteristic spacing of adjacent stripes λ_(c-c) and other experimental parameters such as the stripe width, the stop time and the moving speed of lower substrate were scrutinized. Such theoretical modeling would provide guidance for the precise design and crafting of ordered structures composed of nanomaterials by FESA in the future study. Interestingly, during the preparation of Au nanorods, the formation of ultrathin gold nanowires were unexpectedly observed. Based on conventional synthetic route to Au nanorods using CTAB as soft-templates, we discovered that the addition of a small amount of hydrophobic solvent (e.g., toluene or chloroform) to the Au growth solution entailed the formation of ultrathin Au nanowire, rather than Au nanorods. The growth mechanism of such intriguing water-soluble ultrathin Au nanowires, differed from those formed by using oleylamine (i.e., non-water-soluble Au nanowires), was explored. In general, the ability to craft ordered structures comprising nanomaterials by FESA and CESA provides new opportunities for organizing nanomaterials for use in electronics, optics, optoelectronics, sensors, nanotechnology and biotechnology.
APA, Harvard, Vancouver, ISO, and other styles
12

Davidson, Calvin Ray. "Towards the matter compiler : looking ahead to computer-controlled molecular assembly." Thesis, University of Sussex, 2012. http://sro.sussex.ac.uk/id/eprint/39588/.

Full text
Abstract:
This thesis addresses the concept of atomically precise manufacturing and aims to examine some likely aspects of the necessary infrastructure and knowledge that will be required from a theoretical standpoint. By way of introduction, I trace the history of Science Fiction's influence on scientific research and examine some examples that have specifically inspired the thinking behind nanoscience and nanotechnology. More serious speculation, both in favour of and arguing against the possibility of bottom-up manufacturing is also discussed. I look at two schools of thought; directed assembly, typified by the ambition to assemble molecular structures piece by piece and self assembly, where networks of molecules form into arrays on substrates, imparting novel properties. Various methodologies and tools available to the nanotechnologist are examined. Density functional theory, as employed in the AIMpro code, and Molecular Mechanics are discussed, particularly in respect of their strengths and weaknesses for use in simulating the kind of nanoscale processes appropriate to nanomanufacturing. The theoretical basis behind scanning tunneling microscopes is also examined, with particular attention paid to their potential for upscaling in the future. Some components found within scanning tunneling microscopes are simulated using Density Functional Theory. Models of pure tungsten tips are studied at various levels of complexity in order to decide upon a reasonable compromise between accuracy and ease of computation. The nature of the interlayer interaction in few layer graphenes is examined and pristine and defected graphitic surfaces, are studied with a view towards their use as nano-workbenches. Their images as produced in scanning tunneling microscopes are simulated. Density Functional Theory is applied to organic molecules self-assembling on metallic substrates. Specifically, tetracene on a clean copper surface and on an oxygen-terminated copper surface is studied. Finally, I discuss the significance of the results of each section, taken individually and as a whole, and try to put it into perspective regarding the practicality of actually employing this paradigm realistically in the near future.
APA, Harvard, Vancouver, ISO, and other styles
13

Wanasekara, Nandula Dasitha. "TUNING MECHANICS OF ELASTOMERS AND COMPOSITES VIA CONTROLLED ASSEMBLY AND HIERARCHY." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1409071947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chu, Yang. "RATIONAL CONTROLLED SELF-ASSEMBLY BEHAVIOR OF INORGANIC-ORGANIC HYBRIDS IN SOLUTION." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1488282260459173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rodoplu, Umut. "An Approximation Method For Performance Measurement In Base-stock Controlled Assembly Systems." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/1260467/index.pdf.

Full text
Abstract:
The aim of this thesis is to develop a tractable method for approximating the steady-state behavior of continuous-review base-stock controlled assembly systems with Poisson demand arrivals and manufacturing and assembly facilities modeled as Jackson networks. One class of systems studied is to produce a single type of finished product assembling a number of components and another class is to produce two types of finished products allowing component commonality. The performance measures evaluated are the expected backorders, fill rate and the stockout probability for finished product(s). A partially aggregated but exact model is approximated assuming that the state-dependent transition rates arising as a result of the partial aggregation are constant. This approximation leads to the derivation of a closed-form steady-state probability distribution, which is of product-form. Adequacy of the proposed model in approximating the steady-state performance measures is tested against simulation experiments over a large range of parameters and the approximation turns out to be quite accurate with absolute errors of 10% at most for fill rate and stockout probability, and of less than 1.37 (&amp<br>#8776<br>2) requests for expected backorders. A greedy heuristic which is proposed to be employed using approximate steady-state probabilities is devised to optimize base-stock levels while aiming at an overall service level for finished product(s).
APA, Harvard, Vancouver, ISO, and other styles
16

Keßler, Simon [Verfasser]. "Modeling size-controlled assembly of polymeric nanoparticles in interdigital micromixers / Simon Keßler." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1143992679/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Müller, Marc [Verfasser]. "Light-Controlled Self-Assembly and Self-Sorting of Mammalian Cells / Marc Müller." Mainz : Universitätsbibliothek Mainz, 2020. http://d-nb.info/1202803970/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Stokes, Paul. "Controlled assembly and electronic transport studies of solution processed carbon nanotube devices." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4549.

Full text
Abstract:
Developing techniques for the parallel fabrication of Complementary Metal Oxide Semiconductor (CMOS) compatible single walled carbon nanotube (SWNT) electronic devices is of great importance for nanoelectronic applications. In this thesis, solution processed SWNTs in combination with AC dielectrophoresis (DEP) were utilized to fabricate CMOS compatible SWNT field effect transistors (FETs) and single electron transistors (SETs) with high yield and their detailed electronic transport properties were studied. Solution processing of SWNTs is attractive not only for the high throughput and parallel manufacturing of SWNT devices but also due to the ease of processing at room temperature, and compatibility with various substrates. However, it is generally believed that solution processing introduces defects and can degrade electronic transport properties. The results presented in this dissertation show that devices assembled from stable solutions of SWNT can give rise to high quality FET devices at room temperature and relatively clean SET behavior at low temperature. This is a strong indication that there are no or few intrinsic defects in the SWNTs. The dissertation will also discuss the controlled fabrication of size tunable SWNT SET devices using a novel mechanical template approach which offers a route towards the parallel fabrication of room temperature SET devices. The approach is based on the formation of two tunnel barriers created in a SWNT a distance L apart by bending the SWNT at the edge of a local Al/Al2O3 bottom gate. The local gate tunes individual electrons one by one in the device and defines the size of the quantum dot though its width. By tuning both the back gate and local gate, it is possible to tune the transparency of tunnel barriers and the size of the quantum dot further. Detailed transport spectroscopy of these devices will be presented.<br>ID: 028197673; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references.<br>Ph.D.<br>Doctorate<br>Department of Physics<br>Sciences
APA, Harvard, Vancouver, ISO, and other styles
19

Gomes, Correia Cindy. "Directed self-assembly strategies for orientation-controlled block copolymers for advanced lithography." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0393.

Full text
Abstract:
L’objectif de ce travail était de mettre en évidence le potentiel du PDMSBb-PS pour des applications en nanolithographie avancée. Pour cela, nous avons fourni une compréhension du comportement d’auto-assemblage du PDMSB-b-PS en masse et en film mince. Nous avons réalisé l’auto-assemblage de ce copolymère semicristallin en cylindre et gyroïde bien définis avec des périodicités inférieures à 20 nm grâce à un paramètre d’interaction de Flory-Huggins élevé (Chapitre 2). Nous avons par la suite proposé une approche pour obtenir des lamelles perpendiculaires du PDMSB-b-PS en film mince grâce à l’utilisation de sur-couches neutres réticulables. La polyvalence de cette approche a été démontrée à l’aide de CPBs de masses moléculaires différentes et s’est ensuite étendue à la formation d’empilements via un processus d’auto-assemblage itératif (chapitre 3). Enfin, nous avons réticulé la surcouche neutre à l’aide d’agents photo-sensibles ce qui nous a permis d’obtenir un motif par photolithographie au-dessus du film CPB. Ainsi, il a été possible de contrôler l’orientation du CPB à des endroits spécifiques du film (Chapitre 4)<br>The objective of our work was to highlight the potential of the high-χ PDMSB-b-PS BCP for advanced nanolithography applications. For this purpose, we have demonstrated the ability of our system to self-assemble into well-defined nanostructures in bulk and we have performed the self-assembly of cylinder- and gyroid-forming PDMSB-b-PS BCPs in thin film using industrially-friendly processes (Chapter 2). With the aim of controlling the out-of-plane orientation of lamellar-forming PDMSB-b-PS BCPs in thin film, we have proposed an innovative approach relying on the use of crosslinkable neutral TC layers. The versatility of this approach was demonstrated using BCPs having different macromolecular characteristics and extended to the formation of multi-layer stacks through an iterative self-assembly process (Chapter 3). Taking advantage of the crosslinking ability of our TC material, we have outlined the patterning ability of the TCs using photosensitive crosslinking agents. The patterning of neutral TCs above the lamellar-forming PDMSB-b-PS BCPs further allowed a control of the orientation of the PDMSB-b-PS domains in specific areas of the film (Chapter 4)
APA, Harvard, Vancouver, ISO, and other styles
20

Nagelli, Enoch A. "CONTROLLED FUNCTIONALIZATION AND ASSEMBLY OF GRAPHENE NANOSTRUCTURES FOR SENSING AND ENERGY STORAGE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1402278821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Matsuoka, Tomoyo. "Controlled assembly of metal nanostructures and their application to sensitive molecular sensing." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jiang, Feng. "Ligand Controlled Growth of Aqueous II-VI Semiconductor Nanoparticles and Their Self-Assembly." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311311.

Full text
Abstract:
Colloidal semiconductor nanoparticles (NPs) contain hundreds to thousands of atoms in a roughly spherical shape with diameters in the range of 1-10 nm. The extremely small particle size confines electron transitions and creates size tunable bandgaps, giving rise to the name quantum dots (QDs). The unique optoelectronic properties of QDs enable a broad range of applications in optical and biological sensors, solar cells, and light emitting diodes. The most common compound semiconductor combination is chalcogenide II-VI materials, such as ZnSe, CdSe, and CdTe. But III-V and group IV as well as more complicated ternary materials have been demonstrated. Coordinating organic ligands are used to cap the NP surface during the synthesis, as a mean of protecting, confining, and separating individual particles. This study investigated the impact of the ligand on particle growth and self-assembly into hierarchical structures. ZnSe QDs were synthesized using an aqueous route with four different thiol ligands, including 3-mercaptopropionic acid (MPA), thioglycolic acid (TGA), methyl thioglycolate (MTG), and thiolactic acid (TLA). The particle growth was monitored as a function of reaction time by converting the band gaps measured using UV-vis spectroscopy into particle sizes. A kinetic model based on a diffusion-reaction mechanism was developed to simulate the growth process. The growth data were fit to this model, yielding the binding strength in the order TLA < MTG ≈ TGA < MPA. This result showed the relationship between the QD growth rates and the chemical structures of the ligands. Ligands containing electron-withdrawing groups closer to the anchoring S atom and branching promoted growth, whereas longer, possibly bidendate, ligands retarded it. Removing TGA ligands from the surface of CdTe QDs in a controlled manner yielded new superstructures that were composed of either intact or fused particles. Purifying as-synthesized QDs by precipitating them using an anti-solvent removed most of the free ligand in solution. Aging this purified QD suspension for a week caused self-assembly of QDs into nanoribbons. The long time needed for self-assembly was due to the slow equilibrium between the ligands on QD surface and in solution. Accelerating the approach to equilibrium by diluting purifed CdTe QDs with organic solvents triggered rapid self-assembly of superstructures within a day, forming various nanostructures from nanoribbons to nanoflowers. The type of nanostructures that formed was determined by the solvation of TGA in the trigger solvent. Extracting the smallest portion of TGA in methanol promoted vectorial growth into ribbons consistent with dipole-dipole attractive and charge-charge repulsive interactions. Removing more of the TGA layer in IPA caused the dots to fuse into webs containing clustered ribbons and branches, and the directional nature of the superstructure was lost. Completely deprotecting the surface in acetone promoted photochemical etching and dissolved the QDs, yielding ower-like structures composed of CdS. Nanocrystal (NC) growth mediated by a ligand was also studied in the organic synthesis of FeS₂ nanocubes. Oleylamine was used not only as the ligand but also the solvent and reductant during the reaction. A one hour reaction between iron (II) chloride and elemental sulfur in oleylamine at 200 ℃ and a S to Fe ratio of 6 yielded phase pure pyrite cubes with dimensions of 87.9±14.1 nm. X-ray diffraction (XRD) spectra and Raman peaks for pyrite at 340, 375, and 426 cm⁻¹ confirmed phase purity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results showed that the oleylamine remained on the FeS₂ surface as a ligand. The reaction mechanism includes the production of pyrrhotite Fe₁₋ᵪS (0≤x<0.5) via reduction of S⁰ to S²⁻ by oleylamine and the oxidation of pyrrhotite to pyrite with remaining S⁰.
APA, Harvard, Vancouver, ISO, and other styles
23

Byun, Myunghwan. "Controlled evaporative self-assembly of confined microfluids a route to complex ordered structures /." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shadpour, Sasan. "HIERARCHICAL SELF-ASSEMBLY IN B4 PHASE MORPHOLOGIES CONTROLLED BY STRATEGICALLY PLACING CHIRAL CENTERS." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1626269500504995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sun, Pei. "Ultrathin films of biomolecules with well-controlled nanostructures." Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1109605487.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2005.<br>Title from first page of PDF file. Document formatted into pages; contains xvi, 192 p.; also includes graphics Includes bibliographical references (p. 178-192). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
26

Kirinda, Viraj C. "Well-Controlled Ortho-Phenylene-Based Higher-Order Structures." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1625137591219366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hille, Pascal [Verfasser]. "Advanced group III-nitride nanowire heterostructures - self-assembly and position-controlled growth / Pascal Hille." Gießen : Universitätsbibliothek, 2017. http://d-nb.info/1132510511/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Weiß, Daniel [Verfasser], and Hans-Werner [Akademischer Betreuer] Schmidt. "Controlled Assembly of Supramolecular Nanofibers and their Applications / Daniel Weiß ; Betreuer: Hans-Werner Schmidt." Bayreuth : Universität Bayreuth, 2016. http://d-nb.info/1120492645/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Capozzi, Charles J. "Controlled self-assembly of ito nanoparticles into aggregate wire structures in pmma-ito nanocomposites." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28277.

Full text
Abstract:
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2009.<br>Committee Chair: Gerhardt, Rosario; Engineering: Dr. Arun M. Gokhale; Engineering: Dr. Preet Singh; Engineering: Dr. Mohan Srinivasarao; Engineering: Dr. Meisha Shofner.
APA, Harvard, Vancouver, ISO, and other styles
30

Han, Myoung-Soo. "A Stochastic Approximation For a Kanban Controlled Assembly Production System With General Processing Times /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487931993469382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kent, Ronald Douglas. "Controlled Evaluation of Metal-Based Nanomaterial Transformations." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74998.

Full text
Abstract:
Metal-based nanoparticles (MNPs) are becoming increasingly common in commercial products. Release of these materials into the environment raises concerns about the potential risks they pose to aquatic life. Predicting these risks requires an understanding of MNPs' chemical transformations. In this study, arrays of immobilized MNPs fabricated by nanosphere lithography (NSL) were used to investigate environmental transformations of MNPs. Specifically, sulfidation of silver nanoparticles (Ag NPs) and dissolution of copper-based nanoparticles (Cu NPs) were investigated. Atomic force microscopy (AFM) and transmission electron microscopy were the primary analytical techniques for these investigations. Because the MNPs were immobilized on a solid surface, the samples were field deployable, environmentally relevant metal concentrations were maintained, and the confounding influence of MNP aggregation was eliminated. Ag NP samples were deployed in a full-scale wastewater treatment plant. Sulfidation occurred almost exclusively in anaerobic zones of the WWTP, where the initial sulfidation rate was 11-14 nm of Ag converted to Ag2S per day. Conversion to Ag2S was complete within 7-10 d. Dissolution rates of Cu-based NPs were measured in situ over a range of pH by flow-cell AFM. Based on the measured rates, CuO/Cu(OH)2 NPs dissolve completely within a matter of hours at any pH, metallic Cu NPs persist for a few hours to days, and CuxS NPs do not dissolve significantly over the time scales studied. Field deployment of samples in a freshwater stream confirmed these conclusions for a natural aquatic system. This research demonstrates that environmental transformations of MNPs will be a key factor in determining the ultimate form and concentration of NPs that aquatic organisms will be exposed to.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
32

Jarrett-Wilkins, Charles Nathaniel. "Investigations into the controlled self-assembly of perylene diimide amphiphiles and polyferrocenylsilane containing block copolymers." Thesis, University of Bristol, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chan, Ching Wan. "Binding biological polyanions : understanding and controlling binding mode in order to achieve controlled nanoscale assembly." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/13666/.

Full text
Abstract:
This thesis explores polyanion binding and sensing using varirty of different approaches and aims to understand and manipulate these interactions. Amine-functionalised pyrene derivatives Py-G1 and Py-DAPMA can act as effective heparin sensors in competitive media using a ratiometric fluorescence sensing approach. The assembly of Py-G1 into pre-formed self-assembled multivalent (SAMul) nanostructures provides it with a significant (order of magnitude) advantage in terms of the dynamic range of sensory response over the non-SAMul Py-DAPMA in buffer. In the presence of serum, both ligands can still detect heparin ratiometrically, however, the SAMul sensing mechanism of Py-G1 is switched off. Three series of SAMul dendrons based on L or D lysine and focal point hydrophobic groups, either pyrene or hydrocarbon chains, have been developed. Their ability to exhibit different chiral binding preferences towards chiral polyanions DNA and heparin have been studied. The way in which the ligands are displayed, which in turn depends on the nature of the hydrophobic component and the overall structural characteristics, are absolutely critical. Insertion of a simple linker allows expression of the chiral information at the nanoscale surface. The interaction between heparin and Mallard Blue (Mal-B) or a series of SAMul heparin binders are explored by NMR spectroscopy. The choice of buffer has significant impact on Mal-B/heparin binding, but precipitation of the Mal-B:heparin complex limits the opportunity for NMR analysis. NMR provides some insight to the binding events at the nanoscale and appears particularly useful for uncovering the role of ligands and dynamics in mediating binding with the best binder appearing to have best resolved ligand NMR resonances. The ability of C22-G1 and Py-G1 to ast as “nanoglue”, causing adhesion between polyanions and carbon nanotubes was studied. Both can self-assemble and bind to DNA and SWCNT respectively and C22-G1 is a better DNA and SWCNT binder. Although the attempt to quantitatively assay simultaneous DNA and SWCNT binding was unsuccessful, TEM imaging clearly allowed onto monitor the binding of DNA and CNT, and demonstrated that our synthetic nanoglue system causes them to co-assemble.
APA, Harvard, Vancouver, ISO, and other styles
34

Alazemi, Mubarak FMF. "Controlled Assembly of Graphene Sheets and Carbon Nanospheres for Optimum Electrical Conductivity in Nanostructured Coatings." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1275078196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kent, Ronald Douglas. "Controlled Evaluation of Silver Nanoparticle Dissolution Using Atomic Force Microscopy." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/35632.

Full text
Abstract:
Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ⠥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of un-aggregated AgNP dissolution.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
36

Karr, Roger W. "The assembly of a microcomputer controlled low cost vision-robot system and the design of software." Ohio : Ohio University, 1985. http://www.ohiolink.edu/etd/view.cgi?ohiou1184010908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Phan-Xuan, Minh-Tuan. "Elaboration of microgel protein particles by controlled selfassembling of heat‐denatured beta‐lactoglobulin." Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00770331.

Full text
Abstract:
Beta lactoglobulin (βlg) is a major whey protein in the bovine milk. Upon heating above its denaturation temperature (which is pH-dependent), this globular protein undergoes molecular changes leading to the irreversible aggregation. Depending on the pH and ionic strength, either protein aggregates or gels exhibiting various structures and morphologies have been described. Very recently, it was found that in a narrow range of the pH close to iso-electric point, stable suspensions of rather monodisperse spherical particles with a radius of about a hundred nanometers were formed. These spherical particles which were called microgels might be of special interest for the production of liquid dispersions of β-lactoglobulin aggregates exhibiting various functionalities for food applications. The project on which I report here was a collaboration with the Nestlé Reseach Center (Lausanne, Switzerland) and its objective was to study the formation and structural properties of the microgels in different environmental conditions. The first part of the project is to study the influence of the pH on the formation of microgels. Stable suspensions of protein microgels are formed by heating salt free βlg solutions at concentrations up to about C = 50 g.L-1 if the pH is set within a narrow range between 5.75 and 6.1. The internal protein concentration of these spherical particles is about 150 g.L-1 and the average hydrodynamic radius decreases with increasing pH from 200 nm to 75 nm. The formation of the microgels leads to an increase of the pH, which is a necessary condition to obtain stable suspensions. The spontaneous increase of the pH during microgel formation leads to an increase of their surface charge density and inhibits secondary aggregation. This self-stabilization mechanism is not sufficient if the initial pH is below 5.75 in which case secondary aggregation leads to precipitation. Microgels are no longer formed above a critical initial pH, but instead short curved protein strands are obtained with a hydrodynamic radius of about 15-20 nm. The second part of the work is about the formation of microgels driven by the addition of calcium ions. We found that stable suspensions of spherical protein particles (microgels) can be formed by heating βlg solutions in the presence of calcium ions. The conditions for the calcium induced microgel formation were studied at different pH between 5.8 and 7.5 and different protein concentrations between 5 - 100 g.L-1. The results showed that a critical molar ratio of calcium to proteins (R) is needed to form microgels independent of the protein concentration. R decreases with decreasing pH. The microgels have a hydrodynamic radius ranging from 100 to 300 nm and their internal protein concentration ranges from 0.2 to 0.45 g.mL-1. The determination of calcium bound to the microgels suggests that the crucial parameter for microgel formation is the net charge density of the native proteins. The microgel suspensions are stable in a narrow range of R but aggregate at higher Ca2+ concentrations. In the third part, we continued to investigate the formation of microgels at initial step and how it is growing in the presence of calcium ions. We have proposed a mechanism of formation of blg microgels which follows a nucleation and growing process. The nucleus with define size are formed at the initial state and that is growing in size to reach final size of aggregates. At low calcium concentration it stabilizes and then we obtain a stable suspension of microgels. But at high concentrations, the microgels here can jump to form big aggregates and finally a gel. The structure of gel from microgels is heterogenous at the scale of confocal microscopy and similar to those formed in the presence of NaCl 0.3 M. However the process of formation of these gels is not the same...
APA, Harvard, Vancouver, ISO, and other styles
38

Chervyachkova, Elizaveta [Verfasser], and G. Elisabeth [Akademischer Betreuer] Pollerberg. "Light-controlled self-assembly and self-sorting of cell-like compartments / Elizaveta Chervyachkova ; Betreuer: G. Elisabeth Pollerberg." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177149621/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ieong, Nag Sze. "Strain-controlled photoreactivity of (1)ferrocenophanes and living crystallization-driven self-assembly of polyferrocene-based block copolymers." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503875.

Full text
Abstract:
This Thesis describes three major projects which cover three distinctive areas, namely, organometallic, polymer and materials chemistry. Chapter 1 provides an introduction to the Thesis. First, an overview of strained cycles is given, with particular emphasis on strained [1]ferrocenophanes which includes an overall description of strain related structural properties and their influence in ring-opening reactions. Then strained rings as precursors to polymers by ring-opening polymerization (ROP) is discussed with special focus on the polyferrocenylsilane (PFS) based homopolymers and block polymers obtained from ROP of strained sila[1]ferrocenophane monomers.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Ruimeng. "Design, Synthesis, and Self-assembly of Dendritic Rod-like Molecules with Precisely Controlled Compositions, Interactions, and Topologies." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron157231026041301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schäfer, Philip Sudadyo. "Tuning of color and polarization of the fluorescence of nano-ribbons using laser microscopy and controlled self-assembly." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0435/document.

Full text
Abstract:
Des matériaux ayant des propriétés émissives spécifiques peuvent être obtenus par l'organisation contrôlée de fluorophores aux échelles moléculaire, nano- et micro-métrique. Dans ce travail, l'émission de lumière bleue polarisée est obtenue par l'auto-assemblage hautement anisotrope de n-acènes alcoxylés en nano-rubans. Des techniques de microscopie de fluorescence ont été utilisées pour déterminer le mécanisme de leur croissance et ont été combinées à la cristallographie aux rayons X pour déterminer l'empilement moléculaire dans les nano-objets. L'étude a révélé que la formation des nano-rubans est induite non seulement par le mécanisme de maturation d'Ostwald très commun, mais aussi par une croissance par attachement orienté rarement démontré dans des systèmes organiques. En plus des techniques plus courantes, la microscopie en polarisation de fluorescence de molécules uniques a contribué à caraxctériser l'emplilement moléculaire, bien que les nano-objets à haute densité en chromophore constituent des échantillons très difficiles à étudier. Dans ce travail, les propriétés des nano-rubans ont été contrôlées au niveau microscopique par les conditions de croissance, ainsi que par l'addition de dopants. Ainsi, en combinant différentes molécules et une réaction photochimique sous microscopie, des rubans à motifs colorés sub-micrométriques ont été obtenus. Par ailleurs, l'assemblage orthogonal a été exploité pour développer des réseaux interpénétrés. Ces derniers se distinguent par une émission à double couleur, un transfert d'énergie entre objets et une électroluminescence aux jonctions<br>Materials with specific emissive properties can be obtained by the controlled organization of fluorophores at the molecular, nano- and microscales. In this work, polarized blue light emission is achieved by the highly anisotropic self-assembly of alkoxylated n-acenes into nano-ribbons. Fluorescence microscopy techniques were used to determine the growth mechanism and were combined to X-ray crystallography to determine the molecular packing in the nano-objects. The study revealed that the formation of the nano-ribbons is induced not only by the very common Ostwald ripening mechanism but also by an oriented attachnment growth, rarely observed with such evidence in organic systems. Besides more common techniques, single molecule fluorescence polarization microscopy contributed to characterize the molecular packing, although the nano-objects with high chromophore density represent very challenging samples. In this work, the properties of the nano-ribbons have been controlled at the microscopic level by the growth conditions, as well as by the addition of dopants Thereby, combining different molecules and photochemistry at the sub-micrometer scale under the microscope, colorful patterned ribbons could be obtained. In addition, orthogonal assembly was exploited to grow interpenetrated networks. The latter demonstrated dual color-emission, as well as inter-object energy transfer and electroluminescence at junctions
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Wei. "Design, synthesis and self-assembly of giant molecules with precisely controlled heterogeneities, including composition, functionality, topology and sequence." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1476969792111862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lewin, Christian Verfasser], Alexander [Akademischer Betreuer] Böker, and Andrij Z. [Akademischer Betreuer] [Pich. "Directed self assembly of polymer/nanoparticle composites controlled by internal and external fields / Christian Lewin ; Alexander Böker, Andrij Pich." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1125973064/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lewin, Christian [Verfasser], Alexander Akademischer Betreuer] Böker, and Andrij Z. [Akademischer Betreuer] [Pich. "Directed self assembly of polymer/nanoparticle composites controlled by internal and external fields / Christian Lewin ; Alexander Böker, Andrij Pich." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1125973064/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Wei. "Assembly, characterization and evaluation of a 3rd generation nanoparticle based drug carrier for metastatic breast cancer treatment." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50932.

Full text
Abstract:
Cancer is one of the leading causes of death in the world. For women in the U.S. and the European countries, breast cancer is the most common type and it continuously threatens the lives of the patients and causes huge economic losses. Chemotherapy and endocrine therapy are the common treatments for recurrence prevention and metastatic cancer symptom palliation. However, the uses of these therapies are meanwhile largely limited because their toxic side effects and non-specificity usually lead to low quality lives of the patients. Low aqueous solubility, multi-drug resistance, degradation of drug, limited intra-tumor diffusion and etc. are other limitations of conventional chemotherapies and endocrine therapies. Nanoparticle based drug carriers were extensively studied for therapeutic drug delivery. Many carriers could be loaded with high dose of hydrophobic and hydrophilic drugs, protect the drug from the surrounding in vivo environment during the transportation, specifically target and enter the tumor cells and slowly release the drug thereafter. Advanced nanoparticle drug carriers are studied driven by the need of a more efficient drug delivery. The 3rd generation of nanoparticle based drug carriers are recently developed. They usually consist of more than one type of nanoparticles. Different part of the particle has more specialized functions. Therefore, by carefully selecting from the conventional nanoparticle carriers, a 3rd generation particle could have the properties such as high loading capacity of multiple drugs, prolonged half-life in circulation, higher tendency of accumulating at the tumor site, improved specificity to the tumor cells, higher cell uptake rate and accurately triggered controlled release, and combination of the above-mentioned properties. In our study, a paclitaxel loaded nanoparticle supported immunoliposome was assembled for metastatic breast cancer drug delivery. Functionalized single walled carbon nanohorn or poly(lactic-co-glycolic acid) was encapsulated in the polyethylene glycol (PEG) coated liposome for high drug loading and controlled release. Anti-Her2 antibody or Herceptin® was grafted onto the surface of the liposome for a higher affinity to the Her2 overexpressing breast cancer cells. Firstly, the conjugation of protein to the surface of liposome and PEGylated liposomes were investigated. Proteins with or without membrane binding domain were conjugated to liposome and PEGylated liposomes through covalent and non-covalent binding for comparison. A modified enzyme-linked immune sorbent assay was developed for surface grafted protein quantification. Secondly, the encapsulation of solid nanoparticle into PEGylated immunoliposome was investigated. Results showed a new structure of solid nanoparticle in PEGylated immunoliposome at a 1:1 ratio was formed during the repeated freeze-thawing process. Supported immunoliposomes with high homogeneity in size and structure were purified by sucrose density gradient centrifugation. Thirdly, the drug loading, triggered release, cell binding, cell uptake and cell toxicities of the supported immunoliposome were studied. Release results showed a minimum drug leakage in serum at body temperature from the particle. The release was initiated with a minor burst trigged by low pH inside the tumor cell and followed with a long term linear pattern. Cell assay results showed the highest binding affinity of the antibody or Herceptin® grafted nanoparticles to Her2 overexpressing cell lines and a lysosomal intracellular distribution of the endocytosised particles. In the final study, a fabrication process for polymeric material nanoparticles was established. The process was capable of providing accurate control of the particle size with significant high output rates, thus largely extends the scope of materials for supporting the immunoliposome.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
46

Jones, Jason William. "Enhanced Architectural and Structural Regulation Using Controlled Free Radical Polymerization Techniques; Supramolecular Assemblies: Pseudorotaxanes and Polypseudorotaxanes." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/31766.

Full text
Abstract:
Due in large part to the growth and development of reliable surface characterization techniques, as well as to advances in the physical and chemical techniques used to modify surfaces, the technology of surface modification has seen rapid expansion over the past two decades. A major thrust of this research is the growth of controlled/"living" polymeric brushes from the surface of various substrates, an advance that promises to be a facile and reproducible way of altering surface properties. A unique initiator bearing ATRP (atom transfer radical polymerization), cleavage, and condensation functionalities was prepared and attached to the hydrolyzed surface of silica gel. Preliminary results indicate that control of reversibly terminated grafts of varying degrees of polymerization with polydispersity indices approaching 1.5 can be readily achieved-significant findings in the quest to design desired surface characteristics. Important physical characteristics may also be altered by way of varying molecular topologies. In the second major research thrust, the use of self-assembly to construct such topologies in the form of pseudorotaxanes fashioned from diverse macrocycles with multifarious guest ions is discussed. While the underlying goal was to investigate and understand the mode of complexation based on such environmental factors as substituent affects and neighboring group influences, new insight was gained on the synthetic manipulation of cooperative events-events that freely occur in nature. The complexation behavior of several functionalized bis-(meta-phenylene)-32-crown-10 macrocycles with various paraquat guest moieties was. As expected, studies indicated that electron-donating substituents on the crown ether drive association, a likely result of increased p -p interactions among host and guest species. The association between a bicyclic macrocycle and dimethyl paraquat was also investigated. Not surprisingly, binding of paraquat by the bicyclic was much stronger than the binding found in analogous macrocycles. Lastly, the endgroup functionalization of poly(propyleneimine) dendrimers with two crown ether macrocycles was performed and the complexation with host-specific guests studied. Curiously, two extreme binding regimes were found: the larger 32-membered crown ether assembly displayed anti-cooperative behavior upon complexation with paraquat, while the smaller 24-membered macrocyclic system exhibited cooperative effects with 2o ammonium ions. These cooperative results are among the very first described for non-biological systems and hint at their potential use in developing highly efficient, synthetically designed supramolecular systems.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
47

Chen, Bin [Verfasser], Guido [Akademischer Betreuer] Clever, and Sebastian [Gutachter] Henke. "Controlled self‐assembly of cage‐like structures and their applications in fullerene chemistry / Bin Chen ; Gutachter: Sebastian Henke ; Betreuer: Guido Clever." Dortmund : Universitätsbibliothek Dortmund, 2019. http://d-nb.info/1190888548/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zebin, Su. "DESIGN, SYNTHESIS, AND SELF-ASSEMBLY OF GIANT SHAPE AMPHIPHILES WITH PRECISELY CONTROLLED COMPOSITIONS, INTERACTIONS, AND GEOMETRIES VIA A MOLECULAR LEGO APPROACH." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1572887748730283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Bin [Verfasser], Guido Akademischer Betreuer] Clever, and Sebastian [Gutachter] [Henke. "Controlled self‐assembly of cage‐like structures and their applications in fullerene chemistry / Bin Chen ; Gutachter: Sebastian Henke ; Betreuer: Guido Clever." Dortmund : Universitätsbibliothek Dortmund, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019071903433842921106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nelson, Kjell Erik. "Investigating cell adhesion to controlled surface chemistry via self-assembly of binary composition alkylthiol monolayers, streptavidin immobilization, and cell receptor ligand attachment /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/8051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography