Dissertations / Theses on the topic 'Convection de Rayleigh- Bénard et Bénard-Marangoni'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 dissertations / theses for your research on the topic 'Convection de Rayleigh- Bénard et Bénard-Marangoni.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Trouette, Benoît. "Instabilités de Rayleigh-Bénard-Marangoni, induites par l'évaporation, en régime transitoire : application aux solutions polymères." Paris 11, 2010. http://www.theses.fr/2010PA112298.
Full textThis work aims to study numerically how instabilities are activated in the drying of solvent/polymer solution. Solvent evaporation induces both a cooling and a decrease in solvent concentration at the free surface. Consequently, density variations (buoyancy) and/or superficial tension variations (Marangoni effect) can generate convection into the bulk. Besides, since the temperature and concentration gradients but also the thickness of the solution evolve during the drying, we are dealing here with a full transient problem. For this purpose, two simplified models are established for thermal and solutal regimes respectively. This study mainly focuses on: the transient character of the problem, the role of each phenomenon (thermal/solutal), on one hand, and the impact of the evolution of the solvent mass fraction and by the way of the viscosity of the solution, on the other hand, on the instability thresholds and the flow structure
Trouette, Benoît. "Instabilités de Rayleigh-Bénard-Marangoni, induites par évaporation, en régime transitoire. Applicatons aux solutions polymères." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00598835.
Full textBaudey-Laubier, Louis-Henri. "Modélisation et simulation numérique des transferts de masse et de chaleur induits par évaporation." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1086/document.
Full textThe evaporation of a solvent/solute solution is a transient phenomenon which ends when the whole solvent has disappeared. Phase change generates a cooling of the liquid-gas interface, and consequently, it creates thermal and solutal gradients. These homogeneities spread in the core solution and produce, eventually, a fluid flow. This convection can be due to the surface tension and/or buoyancy variations. Experimental works have shown that some coating thicknesses stemming from drying processes are correlated to the size of the convection cells in the fluid region. A thorough understanding of the physical phenomena responsible to fluid convection should contribute to improve the control of deposit quality.Based on numerical and experimental works, we have studied the onset of convection for three kinds of models for the drying process of a Polyisobutylene-Toluène solution: A pure thermal model which is valid for short times, a solutal model devoted to the simulation of long times, only, and a thermal/solutal coupled model which takes into account the heat and mass transfer over a long time period of the evaporation process. The transient nature of the evaporation problem raises the issue of how to define the onset of the convective flow from a diffusive solution. Indeed, this flow motion occurs from a seed which is a small perturbation of the transient diffusive solution. If the perturbation is too weak, the necessary time interval for a significant growing of its magnitude will be greater than the time scale of the transient regime: thus the solution will never be considered as convective. Consequently, the influence of the perturbation is fundamental. In previous numerical works, this perturbation was imposed at the initial state, often through a random spatial distribution applied to the velocity or temperature field. In the present contribution, we have adopted a physical model where the adiabatic lateral walls have been replaced by diathermal walls: The local thermal inhomogeneities create a very weak flow acting as a small disturbance for the transient diffusive solution.In this thesis, we have developed a numerical model to evaluate the thresholds between the diffusive solutions and the convective flows, for the thermal, solutal and thermal/solutal coupled models, for two- and three-dimensional approximations of the Polyisobutylene-Toluène liquid film. Space-time diagrams and convective cell reconstructions at the liquid-gas interface by a Voronoï algorithm allowed us to get a better understanding of the way the disturbances propagate from the lateral walls for finally giving rise to a convective flow in the core fluid
Roche, Philippe-Emmanuel. "Convection thermique turbulente en cellule de Rayleigh-Bénard cryogénique." Phd thesis, Université Joseph Fourier (Grenoble), 2001. http://tel.archives-ouvertes.fr/tel-00001894.
Full textBouteraa, Mondher. "Convection de Rayleigh-Bénard pour des fluides rhéofluidifiants : approche théorique et expérimentale." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0012/document.
Full textTheoretical and experimental study of Rayleigh-Bénard convection in a non-Newtonian shear-thinning fluid was performed. The theoretical approach consists in a linear and a weakly nonlinear of thermo-convective instability in a horizontal layer of a non-Newtonian fluid, assumed infinite in extent, heated from below and cooled from above. The rheological behavior of the fluid is described by the Carreau model. For this rheological model, the critical threshold is the same as for a Newtonian fluid. The objective of the weakly non linear analysis is to determine on one hand the critical value of the shear-thinning degree above which the bifurcation becomes subcritical and on the other hand, the influence of shear-thinning effects on the pattern selection near the onset, taking into account the possibility of wall slip, a finite thermal conductivity of the walls as well as the thermo-dependency of the viscosity. The impact on the viscosity field and on the evolution of the Nusselt number are characterized. The experimental approach consists in visualizing the convection patterns using the shadowgraph method in a cylindrical cell. Two aspect ratios were considered : AR = 3 and AR = 4. The fluids used are aqueous solutions of xanthan-gum at different concentrations. The influence of shear-thinning effects combined with the thermo-dependency of the viscosity on the stability domain of rolls and hexagons as well as on the transition between rolls and hexagons is highlighted
Abdelali, Ahmed. "Etude expérimentale des instabilités thermoconvectives de Rayleigh-Bénard dans les fluides viscoplastiques." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00845453.
Full textLi, Chong. "Instabilité de Rayleigh-Bénard dans les fluides à seuil : critère de démarrage, expériences et modélisation." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI050/document.
Full textIn this thesis, three main mechanisms proposed in a recent paper (Darbouli et al., Physics of fluids, 25(2) 2013) have been discussed to explain the onset of Rayleigh Bénard Convection in a yield fluid (Carbopol gels): i) the elasto-visco-plasticity behavior of the material below the yield stress, ii) a viscosity at low values of shear rates by creep measurements below the yield stress, iii) a microscopic viewpoint considering the fluid as a porous two phases system. No-slip conditions have been achieved for all the experiments. The results with different Carbopol gels have proved the importance of Y, the yield number which presents the report of the yield stress and the buoyancy effect, as the governing parameter. The critical value of Y^(-1) with no-slip condition has been found between 60 and 90. A visualization measurement with the utilization of thermochromics liquid crystals presents a global view from above. Different structures have been observed in different states of thermal conditions, which describe the evolution of the convection. For several cases the color of the liquid crystals can indicate the temperature field in the whole experiment cell. Numerical simulations with a Herschel-Bulkley model have also been discussed in this thesis. The dimensionless parameters are defined approaching the values obtained in the experiments, so that we can compare the numerical results with some of experimental ones
Menaut, Rémi. "Convection compressible : expériences en hypergravité et modélisation anélastique quasi-géostrophique." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN023/document.
Full textIn large natural objects, thermal convection is associated with large pressure differences, mainly due to hydrostatic balance. This is true in the atmosphere of the Earth (and other planets), in gas giant planets, in stars, but also in the interior of telluric planets. Boussinesq approximation is not valid owing to large compressibility effects, and other approximate models can be used to model these objects, like the anelastic approximation. However, very few experiments have been performed to assess these models. In the present PhD thesis, an experiment is shown, with parameters designed to maximize compressibility effects in a laboratory. In this perspective, an enhanced apparent gravity is obtained using a centrifuge, and Xenon gas is used, allowing us to reach a significant dissipation parameter. In our experiments, we have observed an adiabatic gradient of 3~K/cm and the power law between the superadiabatic Rayleigh number and the Nusselt number measuring the turbulent heat transfer is characterized by an exponent 0.3.Measurements of temperature and pressure fluctuations show that the flow is quasi-geostrophic as a result of the strong rotation rate of the centrifuge. An anelastic, quasi-geostrophic model has then been developed and solved numerically in the same configuration as the experiments
Delenda, Nassim. "Instabilités de fluides visco-élastiques en convection mixte de Rayleigh-Bénard-Poiseuille et en convection thermodiffusive dans un milieu poreux." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10227/document.
Full textThis thesis is dedicated to analytical and numerical study of thermal and thermodiffusive instabilities of viscoelastic fluids. The objective is to contribute to the understanding of the dynamics that results from the competition between different origins of instabilities. In addition to the viscoelastic nature of the fluid and the presence of a destabilizing vertical temperature gradient, other sources of instabilities have to be added: the coupling "convection/Poiseuille flow" on the one hand, and the coupling "convection/Soret effect" inherent to binary mixtures on the other hand. Two physical configurations are then considered. The first part of this thesis will be devoted to the Rayleigh-Bénard-Poiseuille mixed viscoelastic fluid convection, while the second part aims to identify the effect of thermodiffusion and viscoelasticity on convective instabilities in a porous medium. The choice of a porous medium in the second part is primarily motivated by the suggestion of an industrial protocol for separating the constituents of a polymer solution
Larre, Jean Philippe. "Etude expérimentale et théorique de la convection au sein d'un fluide ternaire en configuration de Rayleigh-Bénard." Bordeaux 1, 1999. http://www.theses.fr/1999BOR10660.
Full textLémery, Cédric. "Convection et couche limite thermique: lien entre la convection du manteau terrestre et la dynamique de la lithosphère." Lyon, École normale supérieure (sciences), 2001. http://www.theses.fr/2001ENSL0206.
Full textMoturi, Viswa Maitreyi. "Etude expérimentale d'instabilités à travers la convection turbulente de Rayleigh-Bénard et les instabilités de trajectoires de bulles en ascension." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD030.
Full textThe present work focuses on two common fluid flow problems namely, Turbulent Rayleigh-Bénard Convection and Path instability of rising bubbles immersed in a liquid. Concerning Rotating Turbulent Rayleigh-Bénard Convection, the flow field and temperature field were measured respectively by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in a vertical plan of symmetry of our cylindrical cell of aspect ratio 1. The weakening of the Large Scale Circulation with decreasing Rossby number - leading to its complete disappearance - was confirmed as well as the formation of vortex columns in the rotation dominated regime. By doing velocity cross correlations, it has been possible to prove experimentally that the vorticity of the columns change direction in the cell’s center. The velocity fluctuations in the cell are highly anisotropic and follow a scaling of Ro0.2 in the rotation affected regime. The temperature of the vortex columns as well as of individual plumes has been estimated by LIF measurements. Concerning the Path instability of rising bubbles, small bubbles rise in straight path, whereas beyond a critical size, bubbles rise in zigzag or helical path. Some new experimental points on the marginal stability curve have been obtained by working in silicon oils of 5 and 10 cst and in water. The agreement with the most recent numerical simulations is only partial. The rise velocity, frequency and amplitude of oscillation have also been measured and suggest a supercritical Hopf bifurcation
Le, Gal Patrice. "Sur quelques aspects des structures convectives et de leur dynamique." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb375991057.
Full textGasteuil, Yoann. "Instrumentation Lagrangienne en Turbulence : Mise en œuvre et Analyse." Lyon, École normale supérieure (sciences), 2009. http://www.theses.fr/2009ENSL0541.
Full textThe aim of this PhD thesis is the experimental study of turbulence from a Lagrangian point of view. To do so, we have designed a new measurement based on the use of active instrumented probes. We have developed "instrumented particles" in the form of spherical shells with a diameter of 1. 5-2 cm. They include a battery, an electronic circuit, sensors and a radio frequency transmitter as a data link to the lab. The whole system is neutrally buoyant with respect to the surrounding fluid (water). The first instrumented particle includes a temperature measurement and has been used in a Rayleigh-Bénard convection cell. It gives an original insight on the role of thermal plumes in the transport of heat. In view of studying forces on objects advected by turbulent flows, a second probe has been designed which includes a 3-dimensional measurement of the acceleration of the sphere. Measurements have been made in a von Kármán flow, and also in a very large spherical Couette flow at the University of Maryland. These studies have raised the question of the 6-dimensional dynamics - translation and rotation - of a sphere advected by a turbulent flow field. This issue has been addressed in detail from optical tracking of the sphere positions and orientations. The dynamics of translation is found to be surprisingly similar to that of Lagrangian tracer particles and the dynamics of orientation has revealed a surprisingly high level of intermittency
Tisserand, Jean-Christophe. "Convection thermique : transport et mélange." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00612953.
Full textIstasse, Eric. "Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturés." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211181.
Full textTrois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou.
La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Gibert, Mathieu. "Convection thermique turbulente : Panaches et Fluctuations." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2007. http://tel.archives-ouvertes.fr/tel-00268361.
Full textLe premier système que nous abordons expérimentalement est un Canal Vertical dit Infini au sein duquel règne un gradient de température moyen constant. Le flux de masse dans ce canal est nul. L'image qui se dégage de nos mesures est celle d'un écoulement majoritairement inertiel, où les coefficients dissipatifs (la viscosité en l'occurrence) n'interviennent que pour fixer une longueur de cohérence L. Cette longueur est celle sur laquelle les panaches thermiques peuvent êtres considérés comme en « chute libre ». Le transport horizontal (d'impulsion et de chaleur) est entièrement dû aux fluctuations. La « longueur de mélange » associée est petite devant la largeur du canal. Par contre, le transport de chaleur vertical est dû à des structures cohérentes, les panaches.
Ces panaches, nous les retrouvons dans une étude Lagrangienne de l'écoulement au centre d'une cellule de Rayleigh Bénard. La sonde est une sphère de 2 cm de diamètre qui a la même densité que le fluide que nous utilisons, équipée de thermomètres et d'un émetteur radio. Elle est transportée par les panaches, ce qui nous permet une étude statistique de ceux-ci.
Colinet, Pierre. "Amplitude equations and nonlinear dynamics of surface-tension and buoyancy-driven convective instabilities." Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212204.
Full textThis work is a theoretical contribution to the study of thermo-hydrodynamic instabilities in fluids submitted to surface-tension (Marangoni) and buoyancy (Rayleigh) effects in layered (Benard) configurations. The driving constraint consists in a thermal (or a concentrational) gradient orthogonal to the plane of the layer(s).
Linear, weakly nonlinear as well as strongly nonlinear analyses are carried out, with emphasis on high Prandtl (or Schmidt) number fluids, although some results are also given for low-Prandtl number liquid metals. Attention is mostly devoted to the mechanisms responsible for the onset of complex spatio-temporal behaviours in these systems, as well as to the theoretical explanation of some existing experimental results.
As far as linear stability analyses (of the diffusive reference state) are concerned, a number of different effects are studied, such as Benard convection in two layers coupled at an interface (for which a general classification of instability modes is proposed), surface deformation effects and phase-change effects (non-equilibrium evaporation). Moreover, a number of different monotonous and oscillatory instability modes (leading respectively to patterns and waves in the nonlinear regime) are identified. In the case of oscillatory modes in a liquid layer with deformable interface heated from above, our analysis generalises and clarifies earlier works on the subject. A new Rayleigh-Marangoni oscillatory mode is also described for a liquid layer with an undeformable interface heated from above (coupling between internal and surface waves).
Weakly nonlinear analyses are then presented, first for monotonous modes in a 3D system. Emphasis is placed on the derivation of amplitude (Ginzburg-Landau) equations, with universal structure determined by the general symmetry properties of the physical system considered. These equations are thus valid outside the context of hydrodynamic instabilities, although they generally depend on a certain number of numerical coefficients which are calculated for the specific convective systems studied. The nonlinear competitions of patterns such as convective rolls, hexagons and squares is studied, showing the preference for hexagons with upflow at the centre in the surface-tension-driven case (and moderate Prandtl number), and of rolls in the buoyancy-induced case.
A transition to square patterns recently observed in experiments is also explained by amplitude equation analysis. The role of several fluid properties and of heat transfer conditions at the free interface is examined, for one-layer and two-layer systems. We also analyse modulation effects (spatial variation of the envelope of the patterns) in hexagonal patterns, leading to the description of secondary instabilities of supercritical hexagons (Busse balloon) in terms of phase diffusion equations, and of pentagon-heptagon defects in the hexagonal structures. In the frame of a general non-variational system of amplitude equations, we show that the pentagon-heptagon defects are generally not motionless, and may even lead to complex spatio-temporal dynamics (via a process of multiplication of defects in hexagonal structures).
The onset of waves is also studied in weakly nonlinear 2D situations. The competition between travelling and standing waves is first analysed in a two-layer Rayleigh-Benard system (competition between thermal and mechanical coupling of the layers), in the vicinity of special values of the parameters for which a multiple (Takens-Bogdanov) bifurcation occurs. The behaviours in the vicinity of this point are numerically explored. Then, the interaction between waves and steady patterns with different wavenumbers is analysed. Spatially quasiperiodic (mixed) states are found to be stable in some range when the interaction between waves and patterns is non-resonant, while several transitions to chaotic dynamics (among which an infinite sequence of homoclinic bifurcations) occur when it is resonant. Some of these results have quite general validity, because they are shown to be entirely determined by quadratic interactions in amplitude equations.
Finally, models of strongly nonlinear surface-tension-driven convection are derived and analysed, which are thought to be representative of the transitions to thermal turbulence occurring at very high driving gradient. The role of the fastest growing modes (intrinsic length scale) is discussed, as well as scalings of steady regimes and their secondary instabilities (due to instability of the thermal boundary layer), leading to chaotic spatio-temporal dynamics whose preliminary analysis (energy spectrum) reveals features characteristic of hydrodynamic turbulence. Some of the (2D and 3D) results presented are in qualitative agreement with experiments (interfacial turbulence).
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Rabbanipour, Esfahani Babak. "Convection turbulente et changement de phase, avec applications à la modélisation des mares de fonte arctiques." Thesis, Lille, 2018. http://www.theses.fr/2018LIL1I012.
Full textMelting and solidification coupled with convective flows are fundamental processes in the geophysical context, for instance in the Arctic melt-ponds formation. This system is characterized by the presence of unsteady, chaotic and often turbulent flows. This work is motivated by observations indicating reduction of Arctic sea-ice to the extent that present global model could not predict. The goal of this work is to provide information on the relevant parameters affecting the melting/solidification in sea ice melt ponds. The idealized setup we consider consists of a fluid layer heated from below and in contact with a solid-liquid melting interface on the top side. We investigate such a model system by means of numerical tools. We perform direct numerical simulations by an enthalpy based Lattice Boltzmann algorithm to address the long time dynamics, or equivalently the high Rayleigh number regime, both in two- and three-dimensional setups. We show that the coupled convection and melting process only weakly enhances heat flux and the mixing in the system as compared to the Rayleigh-Bénard setting. As two extensions to system of melting, we consider the effect of applying velocity on the liquid section of the melting system, which represents existence of wind-draft, and we consider the effect of internally heating the system of melting, which represents heating the system of melting through solar radiation
Figoureux, Karine. "Coefficients de diffusion dans la convection de fluides géophysiques hétérogènes : application à l'air nuageux et à l'eau de mer." Lille 1, 2007. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2007/50376-2007-241.pdf.
Full textBrowaeys, Julien. "Les ferrofluides : ondes de surface, résistance de vague et simulation de la convection dans le manteau terrestre." Phd thesis, Université Paris-Diderot - Paris VII, 2000. http://tel.archives-ouvertes.fr/tel-00007235.
Full textGéoris, Philippe. "Contribution à l'étude des instabilités de Marangoni-Bénard et Rayleigh-Bénard pour les systèmes multicouches." Doctoral thesis, Universite Libre de Bruxelles, 1994. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212715.
Full textBergeon, Alain. "Instabilités de Marangoni-Bénard en présence d'effet Soret." Ecully, Ecole centrale de Lyon, 1995. http://www.theses.fr/1995ECDL0023.
Full textThe prediction and control of hydrodynamic instabilities are important for material processing from a melt, as these instabilities often perturb the quality of the material. The theoretical and numerical work presented in this thesis deal with the Marangoni-Bénard instability in binary mixtures with Soret effect. This type of instability is obtained when a fluid layer differentially heated presents a free surface subjected to surface tension depending on temperature and concentration. The natural fluctuations of temperature and concentration along the interface give surface tension gradients. These gradients generate surface forces which can lead, if viscous dissipation and diffusion are unable to damp the motion, to the formation of convective cells. The results concern the onset of this instability and the evolution of the convective structures which are created in two- and three- dimensional parallelepipedic cavities without gravity. First, the linear stability analysis of the conductive solution is presented. This analysis is performed analytically for laterally unbounded cavities and numerically for confined cavities. The nonlinear analysis giving the selection of flow structures beyond the thresholds is performed numerically with the use of a continuation method which has been developed specifically. The results are presented under the form of bifurcation diagrams which are maps of evolution of the physical and mathematical solutions of the system with regard to the variation of one of the characteristic parameters. These diagrams have given many informations on the dynamic of our system allowing for example to explain the disparition or the stabilisation of some of the solutions
Bammou, Lahcen. "Instabilité thermoconvective d'un écoulement Poiseuille-Rayleigh-Bénard-Marangoni en canal ouvert à surface libre." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3030/document.
Full textSeveral studies both numerical and experimental have reported the presence of thermal instabilities in liquid films uniformly heated from below for specific boundary conditions and flows. The presence of these instabilities modifies the associated heat transfer. The subject of this PhD thesis is to study numerically the instability of three-dimensional laminar mixed convection within a liquid flowing on a horizontal channel heated uniformly from below. The upper surface is free and assumed to be flat. The variations of the surface tension with the temperature (Marangoni effect or thermocapillary effect) are taken into account. Although of great interest for many industrial applications, this problem has received little attention from an academic point of view. In this configuration, several types of thermoconvective structures may appear. When the strength of the buoyancy, thermocapillary effects and forced convective currents are comparable, the results show the development of instabilities in the form of steady longitudinal convective rolls similar to those encountered in the Poiseuille-Rayleigh-Bénard flow. To our knowledge, this is the first time that the Poiseuille-Rayleigh-Bénard flow associated to the Marangoni effects has been investigated. The number and spatial distribution of the convective rolls along the channel depend on the flow conditions. We propose a numerical study on the flow conditions that could lead to thermal instabilities with an evaluation of their effect on the heat transfer. The coupled Navier-Stokes and energy equations are solved numerically by the finite volume method taking into account the thermocapillary effects. The results presented concern the influence of several control parameters (the Reynolds, Rayleigh, Biot and Marangoni numbers and the aspect ratio of the channel) on the flow patterns and heat transfer characteristics. In the second part of this work, complimentary to the first, a linear stability analysis of a horizontal liquid film flowing in an open channel, with infinite lateral extension and uniform heating from below, is carried out. An eigenvalue problem is obtained in the course of this analysis which is solved numerically using the Chebyshev collocation spectral method. The stability diagrams determining the threshold parameters leading to thermoconvective instabilities were obtained and analyzed as well as the associated spatial patterns
Es-Sakhy, Moulay Rachid. "Convection de Rayleigh-Bénard-Marangoni en récipient cylindrique à fond conducteur soumis à un flux de chaleur localisé." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3029/document.
Full textThe present research work concerns the study of Rayleigh-Bénard-Marangoni convection in a cylindrical container with a solid substrate base. This solid substrate is heated by a localized heat flux on its underside. The study is divided into two parts : The first part of the work consists of a physical modelling of the problem associated with numerical simulations. The Navier-Stokes and energy equations are solved by using a 3D finite volume method. A conjugate solid-liquid heat transfer is considered. Original morphology of cells (type and number) are observed, they are linked to the geometrical conditions, the dimensionless numbers which govern the physical problem (Prandtl, Rayleigh and Marangoni numbers and the ratio of solid substrate to liquid thermal conductivities). The heat transfers are also evaluated in each case. In the second part of the work, we present an experimental study of Rayleigh-Bénard-Marangoni convection in the same configuration as that studied numerically. Convective structures and their evolutions are studied from images recorded by infrared thermography. Different modes of organization of convective cells have been highlighted for this type of heating with imposed non-uniform heat flux
Zouine, Mohammed. "Structures spatiales et dynamique du désordre en convection de Bénard-Marangoni dans de petits récipients : Etude expérimentale." Aix-Marseille 1, 1988. http://www.theses.fr/1988AIX11150.
Full textDumouchel, Fabien. "Etude expérimentale des champs dynamiques et thermiques de l'écoulement de Benard-Von Karman en aval d'un obstacle chauffé dans l'air et dans l'eau." Rouen, 1997. http://www.theses.fr/1997ROUES067.
Full textNicolas, Xavier. "Simulation numérique et stabilité des écoulements de convection mixte en conduite rectangulaire chauffée par le bas." Phd thesis, Université Paul Sabatier - Toulouse III, 1997. http://tel.archives-ouvertes.fr/tel-00812211.
Full textPrasser, H. M., and Alexander Grahn. "Dissipative Strukturbildung bei exothermen Grenzflächenreaktionen." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-30085.
Full textPrasser, H. M., and Alexander Grahn. "Dissipative Strukturbildung bei exothermen Grenzflächenreaktionen." Forschungszentrum Rossendorf, 2000. https://hzdr.qucosa.de/id/qucosa%3A21835.
Full textPeterson, John William Ph D. "Parallel adaptive finite element methods for problems in natural convection." 2008. http://hdl.handle.net/2152/18091.
Full texttext