To see the other types of publications on this topic, follow the link: Convective loading.

Journal articles on the topic 'Convective loading'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Convective loading.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grabowski, Wojciech W., and Hugh Morrison. "Supersaturation, buoyancy, and deep convection dynamics." Atmospheric Chemistry and Physics 21, no. 18 (September 21, 2021): 13997–4018. http://dx.doi.org/10.5194/acp-21-13997-2021.

Full text
Abstract:
Abstract. Motivated by recent discussions concerning differences of convective dynamics in polluted and pristine environments, the so-called convective invigoration in particular, this paper provides an analysis of factors affecting convective updraft buoyancy, such as the in-cloud supersaturation, condensate and precipitation loading, and entrainment. We use the deep convective period from simulations of daytime convection development over land discussed in our previous publications. An entraining parcel framework is used in the theoretical analysis. We show that for the specific case considered here, finite (positive) supersaturation noticeably reduces pseudo-adiabatic parcel buoyancy and cumulative convective available potential energy (cCAPE) in the lower troposphere. This comes from keeping a small fraction of the water vapor in a supersaturated state and thus reducing the latent heating. Such a lower-tropospheric impact is comparable to the effects of condensate loading and entrainment in the idealized parcel framework. For the entire tropospheric depth, loading and entrainment have a much more significant impact on the total CAPE. For the cloud model results, we compare ensemble simulations applying either a bulk microphysics scheme with saturation adjustment or a more comprehensive double-moment scheme with supersaturation prediction. We compare deep convective updraft velocities, buoyancies, and supersaturations from all ensembles. In agreement with the parcel analysis, the saturation-adjustment scheme provides noticeably stronger updrafts in the lower troposphere. For the simulations predicting supersaturation, there are small differences between pristine and polluted conditions below the freezing level that are difficult to explain by standard analysis of the in-cloud buoyancy components. By applying the piggybacking technique, we show that the lower-tropospheric buoyancy differences between pristine and polluted simulations come from a combination of temperature (i.e., latent heating) and condensate loading differences that work together to make polluted buoyancies and updraft velocities slightly larger when compared to their pristine analogues. Overall, the effects are rather small and contradict previous claims of a significant invigoration of deep convection in polluted environments.
APA, Harvard, Vancouver, ISO, and other styles
2

Takeishi, A., and T. Storelvmo. "Sensitivity study of the aerosol effects on a supercell storm throughout its lifetime." Atmospheric Chemistry and Physics Discussions 14, no. 17 (September 18, 2014): 24087–118. http://dx.doi.org/10.5194/acpd-14-24087-2014.

Full text
Abstract:
Abstract. An increase in atmospheric aerosol loading could alter the microphysics, dynamics, and radiative characteristics of deep convective clouds. Earlier modeling studies have shown that the effects of increased aerosols on the amount of precipitation from deep convective clouds are model-dependent. This study aims to understand the effects of increased aerosol loading on a deep convective cloud throughout its lifetime with the use of the Weather Research and Forecasting (WRF) model as a cloud-resolving model (CRM). It simulates an idealized supercell thunderstorm with 8 different aerosol loadings, for three different cloud microphysics schemes. Variation in aerosol concentration is mimicked by varying either cloud droplet number concentration or the number of activated cloud condensation nuclei. We show that the sensitivity to aerosol loading is dependent on the choice of microphysics scheme. For the schemes that are sensitive to aerosols loading, the production of graupel via riming of snow is the key factor determining the precipitation response. The formulation of snow riming depends on the microphysics scheme and is usually a function of two competing effects, the size effect and the number effect. In many simulations, a decrease in riming is seen with increased aerosol loading, due to the decreased droplet size that lowers the riming efficiency drastically. This decrease in droplet size also results in a delay in the onset of precipitation, as well as so-called warm rain suppression. Although these characteristics of convective invigoration (Rosenfeld et al., 2008) are seen in the first few hours of the simulations, variation in the accumulated precipitation mainly stems from graupel production rather than convective invigoration. These results emphasize the importance of accurate representations of graupel formation in microphysics schemes.
APA, Harvard, Vancouver, ISO, and other styles
3

Aschmann, J., B. M. Sinnhuber, M. P. Chipperfield, and R. Hossaini. "Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere." Atmospheric Chemistry and Physics 11, no. 6 (March 22, 2011): 2671–87. http://dx.doi.org/10.5194/acp-11-2671-2011.

Full text
Abstract:
Abstract. Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.
APA, Harvard, Vancouver, ISO, and other styles
4

Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth. "The response of precipitation to aerosol through riming and melting in deep convective clouds." Atmospheric Chemistry and Physics Discussions 10, no. 11 (November 25, 2010): 29007–50. http://dx.doi.org/10.5194/acpd-10-29007-2010.

Full text
Abstract:
Abstract. We have used a 2-D axisymmetric, non-hydrostatic, bin-resolved cloud model to examine the impact of aerosol changes on the development of mixed-phase convective clouds. We have simulated convective clouds from four different sites (three continental and one tropical marine) with a wide range of realistic aerosol loadings and initial thermodynamic conditions (a total of 93 different clouds). It is found that the accumulated precipitation responds very differently to changing aerosol in the marine and continental environments. For the continental clouds, the scaled total precipitation reaches a maximum for aerosol that produce drop numbers at cloud base between 180–430 cm−3 when other conditions are the same. In contrast, all the tropical marine clouds show an increase in accumulated precipitation and deeper convection with increasing aerosol loading. For continental clouds, drops are rapidly depleted by ice particles shortly after the onset of precipitation. The precipitation is dominantly produced by melting ice particles. The riming rate increases with aerosol when the loading is very low, and decreases when the loading is high. Peak precipitation intensities tend to increase with aerosol up to drop concentrations (at cloud base) of ~500 cm−3 then decrease with further aerosol increases. This behaviour is caused by the initial transition from warm to mixed-phase rain followed by reduced efficiency of mixed-phase rain at very high drop concentrations. The response of tropical marine clouds to increasing aerosol is different to, and larger than, that of continental clouds. In the more humid tropical marine environment with low cloud bases we find that accumulated precipitation increases with increasing aerosol. The increase is driven by the transition from warm to mixed-phase rain. Our study suggests that the response of deep convective clouds to aerosol will be an important contribution to the spatial and temporal variability in cloud microphysics and precipitation.
APA, Harvard, Vancouver, ISO, and other styles
5

Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth. "The response of precipitation to aerosol through riming and melting in deep convective clouds." Atmospheric Chemistry and Physics 11, no. 7 (April 15, 2011): 3495–510. http://dx.doi.org/10.5194/acp-11-3495-2011.

Full text
Abstract:
Abstract. We have used a 2-D axisymmetric, non-hydrostatic, bin-resolved cloud model to examine the impact of aerosol changes on the development of mixed-phase convective clouds. We have simulated convective clouds from four different sites (three continental and one tropical marine) with a wide range of realistic aerosol loadings and initial thermodynamic conditions (a total of 93 different clouds). It is found that the accumulated precipitation responds very differently to changing aerosol in the marine and continental environments. For the continental clouds, the scaled total precipitation reaches a maximum for aerosol that produce drop numbers at cloud base between 180–430 cm−3 when other conditions are the same. In contrast, all the tropical marine clouds show an increase in accumulated precipitation and deeper convection with increasing aerosol loading. For continental clouds, drops are rapidly depleted by ice particles shortly after the onset of precipitation. The precipitation is dominantly produced by melting ice particles. The riming rate increases with aerosol when the loading is very low, and decreases when the loading is high. Peak precipitation intensities tend to increase with aerosol up to drop concentrations (at cloud base) of ~500 cm−3 then decrease with further aerosol increases. This behaviour is caused by the initial transition from warm to mixed-phase rain followed by reduced efficiency of mixed-phase rain at very high drop concentrations. The response of tropical marine clouds to increasing aerosol is different to, and larger than, that of continental clouds. In the more humid tropical marine environment with low cloud bases we find that accumulated precipitation increases with increasing aerosol. The increase is driven by the transition from warm to mixed-phase rain. Our study suggests that the response of deep convective clouds to aerosol will be an important contribution to the spatial and temporal variability in cloud microphysics and precipitation.
APA, Harvard, Vancouver, ISO, and other styles
6

Aschmann, J., B. M. Sinnhuber, M. P. Chipperfield, and R. Hossaini. "Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 5, 2011): 121–62. http://dx.doi.org/10.5194/acpd-11-121-2011.

Full text
Abstract:
Abstract. Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Xiaoliang, Guang J. Zhang, and J. L. F. Li. "Evaluation of Microphysics Parameterization for Convective Clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate 25, no. 24 (December 15, 2012): 8568–90. http://dx.doi.org/10.1175/jcli-d-11-00563.1.

Full text
Abstract:
Abstract A physically based two-moment microphysics parameterization scheme for convective clouds is implemented in the NCAR Community Atmosphere Model version 5 (CAM5) to improve the representation of convective clouds and their interaction with large-scale clouds and aerosols. The explicit treatment of mass mixing ratio and number concentration of cloud and precipitation particles enables the scheme to account for the impact of aerosols on convection. The scheme is linked to aerosols through cloud droplet activation and ice nucleation processes and to stratiform cloud parameterization through convective detrainment of cloud liquid/ice water content (LWC/IWC) and droplet/crystal number concentration (DNC/CNC). A 5-yr simulation with the new convective microphysics scheme shows that both cloud LWC/IWC and DNC/CNC are in good agreement with observations, indicating the scheme describes microphysical processes in convection well. Moreover, the microphysics scheme is able to represent the aerosol effects on convective clouds such as the suppression of warm rain formation and enhancement of freezing when aerosol loading is increased. With more realistic simulations of convective cloud microphysical properties and their detrainment, the mid- and low-level cloud fraction is increased significantly over the ITCZ–southern Pacific convergence zone (SPCZ) and subtropical oceans, making it much closer to the observations. Correspondingly, the serious negative bias in cloud liquid water path over subtropical oceans observed in the standard CAM5 is reduced markedly. The large-scale precipitation is increased and precipitation distribution is improved as well. The long-standing precipitation bias in the western Pacific is significantly alleviated because of microphysics–thermodynamics feedbacks.
APA, Harvard, Vancouver, ISO, and other styles
8

Eastin, Matthew D., William M. Gray, and Peter G. Black. "Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General Statistics." Monthly Weather Review 133, no. 1 (January 1, 2005): 188–208. http://dx.doi.org/10.1175/mwr-2848.1.

Full text
Abstract:
Abstract The buoyancy of hurricane convective vertical motions is studied using aircraft data from 175 radial legs collected in 14 intense hurricanes at four altitudes ranging from 1.5 to 5.5 km. The data of each leg are initially filtered to separate convective-scale features from background mesoscale structure. Convective vertical motion events, called cores, are identified using the criteria that the convective-scale vertical velocity must exceed 1.0 m s−1 for at least 0.5 km. A total of 620 updraft cores and 570 downdraft cores are included in the dataset. Total buoyancy is calculated from convective-scale virtual potential temperature, pressure, and liquid water content using the mesoscale structure as the reference state. Core properties are summarized for the eyewall and rainband regions at each altitude. Characteristics of core average convective vertical velocity, maximum convective vertical velocity, and diameter are consistent with previous studies of hurricane convection. Most cores are superimposed upon relatively weak mesoscale ascent. The mean eyewall (rainband) updraft core exhibits small, but statistically significant, positive total buoyancy below 4 km (between 2 and 5 km) and a modest increase in vertical velocity with altitude. The mean downdraft core not superimposed upon stronger mesoscale ascent also exhibits positive total buoyancy and a slight decrease in downward vertical velocity with decreasing altitude. Buoyant updraft cores cover less than 5% of the total area in each region but accomplish ∼40% of the total upward transport. A one-dimensional updraft model is used to elucidate the relative roles played by buoyancy, vertical perturbation pressure gradient forces, water loading, and entrainment in the vertical acceleration of ordinary updraft cores. Small positive total buoyancy values are found to be more than adequate to explain the vertical accelerations observed in updraft core strength, which implies that ordinary vertical perturbation pressure gradient forces are directed downward, opposing the positive buoyancy forces. Entrainment and water loading are also found to limit updraft magnitudes. The observations support some aspects of both the hot tower hypothesis and symmetric moist neutral ascent, but neither concept appears dominant. Buoyant convective updrafts, however, are integral components of the hurricane’s transverse circulation.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Tianmeng, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen. "Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China." Atmospheric Chemistry and Physics 21, no. 8 (April 26, 2021): 6199–220. http://dx.doi.org/10.5194/acp-21-6199-2021.

Full text
Abstract:
Abstract. Convective clouds are common and play a major role in Earth's water cycle and energy balance; they may even develop into storms and cause severe rainfall events. To understand the convective cloud development process, this study investigates the impact of aerosols on convective clouds by considering the influence of both topography and diurnal variation in radiation. By combining texture analysis, clustering, and thresholding methods, we identify all convective clouds in two warm seasons (May–September, 2016/17) in eastern China based on Himawari-8 Level 1 data. Having large diurnally resolved cloud data together with surface meteorological and environmental measurements, we investigate convective cloud properties and their variation, stratified by elevation and diurnal change. We then analyze the potential impact of aerosol on convective clouds under different meteorological conditions and topographies. In general, convective clouds tend to occur preferentially under polluted conditions in the morning, which reverses in the afternoon. Convective cloud fraction first increases then decreases with aerosol loading, which may contribute to this phenomenon. Topography and diurnal meteorological variations may affect the strength of aerosol microphysical and radiative effects. Updraft is always stronger along the windward slopes of mountains and plateaus, especially in northern China. The prevailing southerly wind near the foothills of mountains and plateaus is likely to contribute to this windward strengthening of updraft and to bring more pollutant into the mountains, thereby strengthening the microphysical effect, invigorating convective clouds. By comparison, over plain, aerosols decrease surface heating and suppress convection by blocking solar radiation reaching the surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Segall, A. E. "Thermoelastic Analysis of Thick-Walled Vessels Subjected to Transient Thermal Loading." Journal of Pressure Vessel Technology 123, no. 1 (August 21, 2000): 146–49. http://dx.doi.org/10.1115/1.1320818.

Full text
Abstract:
A closed-form solution was derived for the transient thermal fields developed in thick-walled vessels subjected to a plausible exponential heating on the internal surface with convection to the surrounding external environment. The resulting series representation of the temperature distribution as a function of time and radial position was then used to derive new relationships for the transient thermoelastic stress states. The derived expressions allow an easy analysis of the significance of the exponential terms and convective coefficient in determining the magnitudes and distribution of the resulting stress states over time. Excellent agreement was seen between the derived temperature and stress relationships and a finite element analysis when the thermophysical and thermoelastic properties were assumed to be independent of temperature.
APA, Harvard, Vancouver, ISO, and other styles
11

Madani, Seyed Saeed. "Effect of Different Parameters on Solar Pond Performance." Asia Pacific Journal of Energy and Environment 1, no. 1 (June 30, 2014): 54–70. http://dx.doi.org/10.18034/apjee.v1i1.211.

Full text
Abstract:
By applying a model of finite differences, the thermal behavior of a large solar pond is studied in this paper. The 32-year data of sunny hour’s today-length ratio are used for the estimation of global radiation. The temperature data of a similar duration are used for evaluating the ambient temperature. The effects of the variation of different zone thicknesses on pond performance are studied. It is observed that the upper convective zone thickness should be as thin as possible, the non-convective zone might be from 1 to 2 m and the lower convective zone thickness may be designed based on the application needs. A thicker non convective zone provides more insulation against heat losses, and a thicker lower convective one supplies a higher storage capacity, though with a lower operating temperature. The heat may be extracted from the pond by either a constant or a variable loading pattern. The appropriate loading pattern can be selected based on the needs and operational temperature. The LCZ temperature of the pond, under several heat extraction patterns, is also presented for practical applications.
APA, Harvard, Vancouver, ISO, and other styles
12

Lebo, Zachary J., and Hugh Morrison. "Dynamical Effects of Aerosol Perturbations on Simulated Idealized Squall Lines." Monthly Weather Review 142, no. 3 (March 1, 2014): 991–1009. http://dx.doi.org/10.1175/mwr-d-13-00156.1.

Full text
Abstract:
Abstract The dynamical effects of increased aerosol loading on the strength and structure of numerically simulated squall lines are explored. Results are explained in the context of Rotunno–Klemp–Weisman (RKW) theory. Changes in aerosol loading lead to changes in raindrop size and number that ultimately affect the strength of the cold pool via changes in evaporation. Thus, the balance between cold pool and low-level wind shear–induced vorticities can be changed by an aerosol perturbation. Simulations covering a wide range of low-level wind shears are performed to study the sensitivity to aerosols in different environments and provide more general conclusions. Simulations with relatively weak low-level environmental wind shear (0.0024 s−1) have a relatively strong cold pool circulation compared to the environmental shear. An increase in aerosol loading leads to a weakening of the cold pool and, hence, a more optimal balance between the cold pool– and environmental shear–induced circulations according to RKW theory. Consequently, there is an increase in the convective mass flux of nearly 20% in polluted conditions relative to pristine. This strengthening coincides with more upright convective updrafts and a significant increase (nearly 20%) in cumulative precipitation. An increase in aerosol loading in a strong wind shear environment (0.0064 s−1) leads to less optimal storms and a suppression of the convective mass flux and precipitation. This occurs because the cold pool circulation is weak relative to the environmental shear when the shear is strong, and further weakening of the cold pool with high aerosol loading leads to an even less optimal storm structure (i.e., convective updrafts begin to tilt downshear).
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Kisuk, Eoin D. O’Cearbhaill, Sophie S. Liu, Angela Zhou, Girish D. Chitnis, Allison E. Hamilos, Jun Xu, et al. "A therapeutic convection–enhanced macroencapsulation device for enhancing β cell viability and insulin secretion." Proceedings of the National Academy of Sciences 118, no. 37 (September 9, 2021): e2101258118. http://dx.doi.org/10.1073/pnas.2101258118.

Full text
Abstract:
Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting β cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.
APA, Harvard, Vancouver, ISO, and other styles
14

Warner, Charles. "Entropy Sources in Equilibrium Conditions over a Tropical Ocean." Journal of the Atmospheric Sciences 62, no. 5 (May 1, 2005): 1588–600. http://dx.doi.org/10.1175/jas3422.1.

Full text
Abstract:
Abstract Confusion has existed as to sources of entropy due to irreversible processes in the atmosphere, the total of which matches the export of entropy by radiation. What is the mechanical efficiency of convection? For an ideal tropical oceanic system in radiative–convective equilibrium, relative magnitudes of sources of entropy are reviewed—from both observations and numerical model results. Recycling of moisture is shown to be important. Leading terms are those relating to evaporation of precipitation, water loading by falling precipitation, and mixing of unsaturated parcels of air, contributing roughly 37%, 30%, and 15% of the total irreversible production of entropy, respectively. Evaporation from the surface accounts for 11%. The remaining 7% is due to turbulent kinetic energy, generation of gravity waves, and sensible heating at the surface. A mechanical efficiency of conversion of heat supply at the surface into kinetic energy of the direct circulation, ≈2.0%, is obtained after the budget study. The leading contribution to the conversion is due to the effect of hydrometeors. Drag of hydrometeors is split into two components based on relative contributions of form drag plus water loading (50%) and frictional drag (50%); however, only the former contributes to the direct circulation. The contribution of turbulent kinetic energy is found to be small. Results from the budget study are found to correspond with the finding of a threshold in values of convective available potential energy by Roff and Yano, and with numerical results from a three-dimensional model of convective equilibrium by Shutts and Gray.
APA, Harvard, Vancouver, ISO, and other styles
15

Wisler, D. C., R. C. Bauer, and T. H. Okiishi. "Secondary Flow, Turbulent Diffusion, and Mixing in Axial-Flow Compressors." Journal of Turbomachinery 109, no. 4 (October 1, 1987): 455–69. http://dx.doi.org/10.1115/1.3262127.

Full text
Abstract:
The relative importance of convection by secondary flows and diffusion by turbulence as mechanisms responsible for mixing in multistage, axial-flow compressors has been investigated by using the ethylene tracer-gas technique and hot-wire anemometry. The tests were conducted at two loading levels in a large, low-speed, four-stage compressor. The experimental results show that considerable cross-passage and spanwise fluid motion can occur and that both secondary flow and turbulent diffusion can play important roles in the mixing process, depending upon location in the compressor and loading level. In the so-called freestream region, turbulent diffusion appeared to be the dominant mixing mechanism. However, near the endwalls and along airfoil surfaces at both loading levels, the convective effects from secondary flow were of the same order of magnitude as, and in some cases greater than, the diffusive effects from turbulence. Calculations of the secondary flowfield and mixing coefficients support the experimental findings.
APA, Harvard, Vancouver, ISO, and other styles
16

Murdzek, Shawn S., Paul M. Markowski, Yvette P. Richardson, and Matthew R. Kumjian. "Should Reversible Convective Inhibition be Used when Determining the Inflow Layer of a Convective Storm?" Journal of the Atmospheric Sciences 78, no. 10 (October 2021): 3047–67. http://dx.doi.org/10.1175/jas-d-21-0069.1.

Full text
Abstract:
AbstractConvective inhibition (CIN) is one of the parameters used by forecasters to determine the inflow layer of a convective storm, but little work has examined the best way to compute CIN. One decision that must be made is whether to lift parcels following a pseudoadiabat (removing hydrometeors as the parcel ascends) or reversible moist adiabat (retaining hydrometeors). To determine which option is best, idealized simulations of ordinary convection are examined using a variety of base states with different reversible CIN values for parcels originating in the lowest 500 m. Parcel trajectories suggest that ascent over the lowest few kilometers, where CIN is typically accumulated, is best conceptualized as a reversible moist adiabatic process instead of a pseudoadiabatic process. Most inflow layers do not contain parcels with substantial reversible CIN, despite these parcels possessing ample convective available potential energy and minimal pseudoadiabatic CIN. If a stronger initiation method is used, or hydrometeor loading is ignored, simulations can ingest more parcels with large amounts of reversible CIN. These results suggest that reversible CIN, not pseudoadiabatic CIN, is the physically relevant way to compute CIN and that forecasters may benefit from examining reversible CIN instead of pseudoadiabatic CIN when determining the inflow layer.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhao, Pengguo, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou. "Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China." Atmospheric Chemistry and Physics 20, no. 21 (November 11, 2020): 13379–97. http://dx.doi.org/10.5194/acp-20-13379-2020.

Full text
Abstract:
Abstract. The joint effects of aerosol, thermodynamic, and cloud-related factors on cloud-to-ground lightning in Sichuan were investigated by a comprehensive analysis of ground-based measurements made from 2005 to 2017 in combination with reanalysis data. Data include aerosol optical depth, cloud-to-ground (CG) lightning density, convective available potential energy (CAPE), mid-level relative humidity, lower- to mid-tropospheric vertical wind shear, cloud-base height, total column liquid water (TCLW), and total column ice water (TCIW). Results show that CG lightning density and aerosols are positively correlated in the plateau region and negatively correlated in the basin region. Sulfate aerosols are found to be more strongly associated with lightning than total aerosols, so this study focuses on the role of sulfate aerosols in lightning activity. In the plateau region, the lower aerosol concentration stimulates lightning activity through microphysical effects. Increasing the aerosol loading decreases the cloud droplet size, reducing the cloud droplet collision–coalescence efficiency and inhibiting the warm-rain process. More small cloud droplets are transported above the freezing level to participate in the freezing process, forming more ice particles and releasing more latent heat during the freezing process. Thus, an increase in the aerosol loading increases CAPE, TCLW, and TCIW, stimulating CG lightning in the plateau region. In the basin region, by contrast, the higher concentration of aerosols inhibits lightning activity through the radiative effect. An increase in the aerosol loading reduces the amount of solar radiation reaching the ground, thereby lowering the CAPE. The intensity of convection decreases, resulting in less supercooled water being transported to the freezing level and fewer ice particles forming, thereby increasing the total liquid water content. Thus, an increase in the aerosol loading suppresses the intensity of convective activity and CG lightning in the basin region.
APA, Harvard, Vancouver, ISO, and other styles
18

Molinari, John, David M. Romps, David Vollaro, and Leon Nguyen. "CAPE in Tropical Cyclones." Journal of the Atmospheric Sciences 69, no. 8 (August 1, 2012): 2452–63. http://dx.doi.org/10.1175/jas-d-11-0254.1.

Full text
Abstract:
Abstract Convective available potential energy (CAPE) and the vertical distribution of buoyancy were calculated for more than 2000 dropsonde soundings collected by the NOAA Gulfstream-IV aircraft. Calculations were done with and without the effects of condensate loading, entrainment, and the latent heat of fusion. CAPE showed larger values downshear than upshear within 400 km of the center, consistent with the observed variation of convective intensity. The larger downshear CAPE arose from (i) higher surface specific humidity, (ii) lower midtropospheric temperature, and, for entraining CAPE, (iii) larger free-tropospheric relative humidity. Reversible CAPE had only one-half the magnitude of pseudoadiabatic CAPE. As shown previously, reversible CAPE with fusion closely resembled pseudoadiabatic CAPE without fusion. Entrainment had the most dramatic impact. Entraining CAPE was consistent with the observed radial distribution of convective intensity, displaying the largest values downshear at inner radii. Without entrainment, downshear CAPE was smallest in the core and increased outward to the 600-km radius. The large number of sondes allowed the examination of soundings at the 90th percentile of conditional instability, which reflect the conditions leading to the most vigorous updrafts. Observations of convection in tropical cyclones prescribe the correct method for calculating this conditional instability. In particular, the abundance and distribution of vigorous deep convection is most accurately reflected by calculating CAPE with condensate retention and a fractional entrainment rate in the range of 5%–10% km−1.
APA, Harvard, Vancouver, ISO, and other styles
19

Jeon, Ye-Lim, Sungju Moon, Hyunho Lee, Jong-Jin Baik, and Jambajamts Lkhamjav. "Non-Monotonic Dependencies of Cloud Microphysics and Precipitation on Aerosol Loading in Deep Convective Clouds: A Case Study Using the WRF Model with Bin Microphysics." Atmosphere 9, no. 11 (November 8, 2018): 434. http://dx.doi.org/10.3390/atmos9110434.

Full text
Abstract:
Aerosol-cloud-precipitation interactions in deep convective clouds are investigated through numerical simulations of a heavy precipitation event over South Korea on 15–16 July 2017. The Weather Research and Forecasting model with a bin microphysics scheme is used, and various aerosol number concentrations in the range N0 = 50–12,800 cm−3 are considered. Precipitation amount changes non-monotonically with increasing aerosol loading, with a maximum near a moderate aerosol loading (N0 = 800 cm−3). Up to this optimal value, an increase in aerosol number concentration results in a greater quantity of small droplets formed by nucleation, increasing the number of ice crystals. Ice crystals grow into snow particles through deposition and riming, leading to enhanced melting and precipitation. Beyond the optimal value, a greater aerosol loading enhances generation of ice crystals while the overall growth of ice hydrometeors through deposition stagnates. Subsequently, the riming rate decreases because of the smaller size of snow particles and supercooled drops, leading to a decrease in ice melting and a slight suppression of precipitation. As aerosol loading increases, cold pool and low-level convergence strengthen monotonically, but cloud development is more strongly affected by latent heating and convection within the system that is non-monotonically reinforced.
APA, Harvard, Vancouver, ISO, and other styles
20

Storer, Rachel L., and Susan C. van den Heever. "Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds." Journal of the Atmospheric Sciences 70, no. 2 (February 1, 2013): 430–46. http://dx.doi.org/10.1175/jas-d-12-076.1.

Full text
Abstract:
Abstract This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as cloud condensation nuclei (CCN). Polluted simulations contained more DCCs, wider storms, higher cloud tops, and more convective precipitation domainwide. Differences in warm cloud microphysics were largely consistent with the first and second aerosol indirect effects. The average surface precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in average precipitation. The production of rain from ice, though it also decreased, became a more important contribution to precipitation as the aerosol concentration increased. The DCCs in polluted simulations contained more frequent extreme values of vertical velocity, but the average updraft speed decreased with increasing aerosols in DCCs above 6 km. An examination of the buoyancy term of the vertical velocity equation demonstrates that the drag associated with condensate loading is an important factor in determining the average updraft strength. The largest contributions to latent heating in DCCs were cloud nucleation and vapor deposition onto water and ice, but changes in latent heating were, on average, an order of magnitude smaller than those in the condensate loading term. The average updraft speed was largely affected by increased drag from condensate loading in more mature updrafts, while early storm updrafts experienced convective invigoration from increased latent heating.
APA, Harvard, Vancouver, ISO, and other styles
21

Lensky, I. M., and S. Shiff. "Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading." Advances in Geosciences 12 (August 13, 2007): 95–100. http://dx.doi.org/10.5194/adgeo-12-95-2007.

Full text
Abstract:
Abstract. Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG). The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold). It seems from the data presented here that the clouds' response to the aerosol loading is very short.
APA, Harvard, Vancouver, ISO, and other styles
22

Graf, H. F., J. Yang, and T. M. Wagner. "Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia." Atmospheric Chemistry and Physics Discussions 7, no. 6 (November 23, 2007): 17099–116. http://dx.doi.org/10.5194/acpd-7-17099-2007.

Full text
Abstract:
Abstract. In 1997/98 a severe smoke episode due to extensive biomass burning, especially of peat, was observed over Indonesia. September 1997 was the month with the highest aerosol burden. This month was simulated using the limited area model REMOTE driven at its lateral boundaries by ERA40 reanalysis data. REMOTE was extended by a new convective cloud parameterization mimicking individual clouds competing for instability energy. This allows for the interaction of aerosols and convective clouds and precipitation. Results show that convective precipitation is diminished at all places with high aerosol loading, but at some areas with high background humidity precipitation from large-scale clouds may over-compensate the loss in convective rainfall. At individual time steps, very few cases were found when polluted convective clouds produced intensified rainfall via mixed phase microphysics. However, these cases are not unequivocal and opposite results were also simulated, indicating that other than aerosol-microphysics effects have important impact on the results. Overall, the introduction of the new cumulus parameterization and of aerosol-cloud interaction improved the simulation of precipitation patterns and total amount.
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Qian, Ilan Koren, Orit Altaratz, Reuven H. Heiblum, Guy Dagan, and Lital Pinto. "How do changes in warm-phase microphysics affect deep convective clouds?" Atmospheric Chemistry and Physics 17, no. 15 (August 9, 2017): 9585–98. http://dx.doi.org/10.5194/acp-17-9585-2017.

Full text
Abstract:
Abstract. Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.
APA, Harvard, Vancouver, ISO, and other styles
24

Lebo, Z. J., H. Morrison, and J. H. Seinfeld. "Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?" Atmospheric Chemistry and Physics Discussions 12, no. 4 (April 19, 2012): 10059–114. http://dx.doi.org/10.5194/acpd-12-10059-2012.

Full text
Abstract:
Abstract. Three configurations of a bulk microphysics scheme in conjunction with a detailed bin scheme are implemented in the Weather Research and Forecasting (WRF) model to specifically address the role of the saturation adjustment assumption (i.e., condensing/evaporating the surplus/deficit water vapor relative to saturation in one time step) on aerosol-induced invigoration of deep convective clouds. The bulk model configurations are designed to treat cloud droplet condensation/evaporation using either saturation adjustment, as employed in most bulk models, or an explicit representation of supersaturation over a time step, as used in bin models. Results demonstrate that the use of saturation adjustment artificially enhances condensation and latent heating at low levels and limits the potential for an increase in aerosol concentration to increase buoyancy at mid to upper levels. This leads to a small weakening of the time- and domain-averaged convective mass flux (~ -3%) in polluted compared to clean conditions. In contrast, the bin model and bulk scheme with explicit prediction of supersaturation simulate an increase in latent heating aloft and the convective updraft mass flux is weakly invigorated (~5%). The bin model also produces a large increase in domain-mean cumulative surface precipitation in polluted conditions (~18%), while all of the bulk model configurations simulate little change in precipitation. Finally, it is shown that the cold pool weakens substantially with increased aerosol loading when saturation adjustment is applied, which acts to reduce the low-level convergence and weaken the convective dynamics. With an explicit treatment of supersaturation in the bulk and bin models there is little change in cold pool strength, so that the convective response to polluted conditions is influenced more by changes in latent heating aloft. It is concluded that the use of saturation adjustment can explain differences in the response of cold pool evolution and convective dynamics with aerosol loading simulated by the bulk and bin models, but cannot explain large differences in the response of surface precipitation between these models.
APA, Harvard, Vancouver, ISO, and other styles
25

Lebo, Z. J., H. Morrison, and J. H. Seinfeld. "Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?" Atmospheric Chemistry and Physics 12, no. 20 (October 30, 2012): 9941–64. http://dx.doi.org/10.5194/acp-12-9941-2012.

Full text
Abstract:
Abstract. Three configurations of a bulk microphysics scheme in conjunction with a detailed bin scheme are implemented in the Weather Research and Forecasting (WRF) model to specifically address the role of the saturation adjustment assumption (i.e., condensing/evaporating the surplus/deficit water vapor relative to saturation in one time step) on aerosol-induced invigoration of deep convective clouds. The bulk model configurations are designed to treat cloud droplet condensation/evaporation using either saturation adjustment, as employed in most bulk models, or an explicit representation of supersaturation over a time step, as used in bin models. Results demonstrate that the use of saturation adjustment artificially enhances condensation and latent heating at low levels and limits the potential for an increase in aerosol concentration to increase buoyancy at mid to upper levels. This leads to a small weakening of the time- and domain-averaged convective mass flux (~-3%) in polluted compared to clean conditions. In contrast, the bin model and bulk scheme with explicit prediction of supersaturation simulate an increase in latent heating aloft and the convective updraft mass flux is weakly invigorated (~5%). The bin model also produces a large increase in domain-mean cumulative surface precipitation in polluted conditions (~18%), while all of the bulk model configurations simulate little change in precipitation. Finally, it is shown that the cold pool weakens substantially with increased aerosol loading when saturation adjustment is applied, which acts to reduce the low-level convergence and weaken the convective dynamics. With an explicit treatment of supersaturation in the bulk and bin models there is little change in cold pool strength, so that the convective response to polluted conditions is influenced more by changes in latent heating aloft. It is concluded that the use of saturation adjustment can explain differences in the response of cold pool evolution and convective dynamics with aerosol loading simulated by the bulk and bin models, but cannot explain large differences in the response of surface precipitation between these models.
APA, Harvard, Vancouver, ISO, and other styles
26

Grant, Leah D., and Susan C. van den Heever. "Cold Pool and Precipitation Responses to Aerosol Loading: Modulation by Dry Layers." Journal of the Atmospheric Sciences 72, no. 4 (March 31, 2015): 1398–408. http://dx.doi.org/10.1175/jas-d-14-0260.1.

Full text
Abstract:
Abstract The relative sensitivity of midlatitude deep convective precipitation to aerosols and midlevel dry layers has been investigated in this study using high-resolution cloud-resolving model simulations. Nine simulations, including combinations of three moisture profiles and three aerosol number concentration profiles, were performed. Because of the veering wind profile of the initial sounding, the convection splits into a left-moving storm that is multicellular in nature and a right-moving storm, a supercell, which are analyzed separately. The results demonstrate that while changes to the moisture profile always induce larger changes in precipitation than do variations in aerosol concentrations, multicells are sensitive to aerosol perturbations whereas supercells are less so. The multicellular precipitation sensitivity arises through aerosol impacts on the cold pool forcing. It is shown that the altitude of the dry layer influences whether cold pools are stronger or weaker and hence whether precipitation increases or decreases with increasing aerosol concentrations. When the dry-layer altitude is located near cloud base, cloud droplet evaporation rates and hence latent cooling rates are greater with higher aerosol loading, which results in stronger low-level downdrafts and cold pools. However, when the dry-layer altitude is located higher above cloud base, the low-level downdrafts and cold pools are weaker with higher aerosol loading because of reduced raindrop evaporation rates. The changes to the cold pool strength initiate positive feedbacks that further modify the cold pool strength and subsequent precipitation totals. Aerosol impacts on deep convection are therefore found to be modulated by the altitude of the dry layer and to vary inversely with the storm organization.
APA, Harvard, Vancouver, ISO, and other styles
27

Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. Davidi. "Aerosol-induced changes of convective cloud anvils produce strong climate warming." Atmospheric Chemistry and Physics 10, no. 10 (May 31, 2010): 5001–10. http://dx.doi.org/10.5194/acp-10-5001-2010.

Full text
Abstract:
Abstract. The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (τ), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.
APA, Harvard, Vancouver, ISO, and other styles
28

Dagan, G., I. Koren, and O. Altaratz. "Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression." Atmospheric Chemistry and Physics Discussions 14, no. 16 (September 12, 2014): 23555–81. http://dx.doi.org/10.5194/acpd-14-23555-2014.

Full text
Abstract:
Abstract. How do changes in the amount and properties of aerosol affect warm clouds? Recent studies suggest that they have opposing effects. Some suggest that an increase in aerosol loading leads to enhanced evaporation and therefore smaller clouds, whereas other studies suggest clouds' invigoration. In this study, using a bin-microphysics cloud model, we propose a theoretical scheme that analyzes the evolution of key processes in warm clouds, under different aerosol loading and environmental conditions, to explain this contradiction. Such a framework reveals a robust reversal in the trend of the clouds' response to an increase in aerosol loading. When aerosol conditions are shifted from super-pristine to slightly pollute, the clouds formed are deeper and have a larger water mass. Such a trend continues up to an optimal concentration (Nop) that allows the cloud to achieve a maximal water mass. Hence, for any concentration below Nop the cloud formed contains less mass and therefore can be considered as aerosol limited, whereas for concentrations greater than Nop cloud periphery processes, such as enhanced entrainment, take over leading to cloud suppression. We show that Nop is a function of the thermodynamic conditions (temperature and humidity profiles). Thus, profiles that favor deeper clouds would dictate larger values of Nop, whereas for profiles of shallow convective clouds, Nop corresponds to the pristine range of the aerosol loading. Such a view of a trend reversal, marked by the optimal concentration, Nop, helps one to bridge the gap between the contradictory results of numerical models and observations. Satellite studies are biased in favor of larger clouds that are characterized by larger Nop values and therefore invigoration is observed. On the other hand, modeling studies are biased in favor of small, mostly trade-like convective clouds, which are characterized by low Nop values (in the pristine range), and therefore cloud suppression is mostly reported as a response to an increase in aerosol loading.
APA, Harvard, Vancouver, ISO, and other styles
29

Dagan, G., I. Koren, and O. Altaratz. "Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression." Atmospheric Chemistry and Physics 15, no. 5 (March 10, 2015): 2749–60. http://dx.doi.org/10.5194/acp-15-2749-2015.

Full text
Abstract:
Abstract. How do changes in the amount and properties of aerosol affect warm clouds? Recent studies suggest that they have opposing effects. Some suggest that an increase in aerosol loading leads to enhanced evaporation and therefore smaller clouds, whereas other studies suggest clouds' invigoration. In this study, using an axisymmetric bin-microphysics cloud model, we propose a theoretical scheme that analyzes the evolution of key processes in warm clouds, under different aerosol loading and environmental conditions, to explain this contradiction. Such an analysis of the key processes reveals a robust reversal in the trend of the clouds' response to an increase in aerosol loading. When aerosol conditions are shifted from superpristine to slightly polluted, the clouds formed are deeper and have larger water mass. Such a trend continues up to an optimal concentration (Nop) that allows the cloud to achieve a maximal water mass. Hence, for any concentration below Nop the cloud formed contains less mass and therefore can be considered as aerosol-limited, whereas for concentrations greater thanNop cloud periphery processes, such as enhanced entrainment and evaporation, take over leading to cloud suppression. We show that Nop is a function of the thermodynamic conditions (temperature and humidity profiles). Thus, profiles that favor deeper clouds would dictate larger values of Nop, whereas for profiles of shallow convective clouds, Nop corresponds to the pristine range of the aerosol loading. Such a view of a trend reversal, marked by the optimal concentration, Nop, helps one to bridge the gap between the contradictory results of numerical models and observations. Satellite studies are biased in favor of larger clouds that are characterized by larger Nop values and therefore invigoration is observed. On the other hand, modeling studies of cloud fields are biased in favor of small, mostly trade-like convective clouds, which are characterized by low Nop values (in the pristine range) and, therefore, cloud suppression is mostly reported as a response to an increase in aerosol loading.
APA, Harvard, Vancouver, ISO, and other styles
30

Sajjad, Muhammad, Hassan Ali, and Muhammad Kamran. "Thermal-hydraulic analysis of water based ZrO2 nanofluids in segmental baffled shell and tube heat exchangers." Thermal Science 24, no. 2 Part B (2020): 1195–205. http://dx.doi.org/10.2298/tsci180615291s.

Full text
Abstract:
Thermal-hydraulic characteristics of water based ZrO2 nanofluids has been investigated in a segmental baffled shell and tube heat exchanger in turbulent flow regime. The effect of Reynolds number, nanoparticle loading, mass-flow rate, and tube lay-out has been analysed on overall heat transfer coefficient. The effect of Reynolds number on the tube side pressure drop and convective heat coefficient have also been discussed. The effect of shell side mass-flow rate was also investigated on shell side heat transfer coefficient determined using Bell-Delaware method. The nanoparticle volume concentration is taken very low i. e. 0.2%, 0.4%, and 0.8%, respectively. The improvement in both tube side convective heat transfer coefficient and overall heat transfer coefficient has been observed. The maximum improvement in the convective heat transfer coefficient is found to be 14.1% for 0.8% ZrO2 nanofluids. However, the percentage enhancement in tube side pressure drop was higher than the percentage increment in the tube side heat transfer coefficient.
APA, Harvard, Vancouver, ISO, and other styles
31

Morrison, H., and W. W. Grabowski. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics Discussions 11, no. 5 (May 23, 2011): 15573–629. http://dx.doi.org/10.5194/acpd-11-15573-2011.

Full text
Abstract:
Abstract. This paper presents results from 240-member ensemble simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Simulations using a two-dimensional cloud system-resolving model are run with pristine, polluted, or highly polluted aerosol conditions and large-scale forcing from a 6-day period of active monsoon conditions during the 2006 Tropical Warm Pool – International Cloud Experiment (TWP-ICE). Domain-mean surface precipitation is insensitive to aerosols primarily because the large-scale forcing is prescribed and dominates the water and static energy budgets. The spread of the top-of-atmosphere (TOA) shortwave and longwave radiative fluxes among different ensemble members for the same aerosol loading is surprisingly large, exceeding 25 W m−2 even when averaged over the 6-day period. This variability is caused by random fluctuations in the strength and timing of individual deep convective events. The ensemble approach demonstrates a small weakening of convection averaged over the 6-day period in the polluted simulations compared to pristine. Despite this weakening, the cloud top heights and anvil ice mixing ratios are higher in polluted conditions. This occurs because of the larger concentrations of cloud droplets that freeze, leading directly to higher ice particle concentrations, smaller ice particle sizes, and smaller fall velocities compared to simulations with pristine aerosols. Weaker convection in polluted conditions is a direct result of the changes in anvil ice characteristics and subsequent upper-tropospheric radiative heating and weaker tropospheric destabilization. Such a conclusion offers a different interpretation of recent satellite observations of tropical deep convection in pristine and polluted environments compared to the hypothesis of aerosol-induced convective invigoration. Sensitivity tests using the ensemble approach with modified microphysical parameters or domain configuration (horizontal gridlength, domain size) produce results that are similar to baseline, although there are quantitative differences in estimates of aerosol impacts on TOA radiative fluxes.
APA, Harvard, Vancouver, ISO, and other styles
32

Morrison, H., and W. W. Grabowski. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics 11, no. 20 (October 24, 2011): 10503–23. http://dx.doi.org/10.5194/acp-11-10503-2011.

Full text
Abstract:
Abstract. This paper presents results from 240-member ensemble simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Simulations using a two-dimensional cloud-system resolving model are run with pristine, polluted, or highly polluted aerosol conditions and large-scale forcing from a 6-day period of active monsoon conditions during the 2006 Tropical Warm Pool – International Cloud Experiment (TWP-ICE). Domain-mean surface precipitation is insensitive to aerosols primarily because the large-scale forcing is prescribed and dominates the water and static energy budgets. The spread of the top-of-atmosphere (TOA) shortwave and longwave radiative fluxes among different ensemble members for the same aerosol loading is surprisingly large, exceeding 25 W m−2 even when averaged over the 6-day period. This variability is caused by random fluctuations in the strength and timing of individual deep convective events. The ensemble approach demonstrates a small weakening of convection averaged over the 6-day period in the polluted simulations compared to pristine. Despite this weakening, the cloud top heights and anvil ice mixing ratios are higher in polluted conditions. This occurs because of the larger concentrations of cloud droplets that freeze, leading directly to higher ice particle concentrations, smaller ice particle sizes, and smaller fall velocities compared to simulations with pristine aerosols. Weaker convection in polluted conditions is a direct result of the changes in anvil ice characteristics and subsequent upper-tropospheric radiative heating and weaker tropospheric destabilization. Such a conclusion offers a different interpretation of recent satellite observations of tropical deep convection in pristine and polluted environments compared to the hypothesis of aerosol-induced convective invigoration. Sensitivity tests using the ensemble approach with modified microphysical parameters or domain configuration (horizontal gridlength, domain size) produce results that are similar to baseline, although there are quantitative differences in estimates of aerosol impacts on TOA radiative fluxes.
APA, Harvard, Vancouver, ISO, and other styles
33

Chhabra, Varun, and Naveen Kumar Gupta. "Analysis of Stress Intensity Factor in a Surface Cracked Plate under Convective Thermal Loading." IOP Conference Series: Materials Science and Engineering 1116, no. 1 (April 1, 2021): 012011. http://dx.doi.org/10.1088/1757-899x/1116/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Fan, Jiwen, and Alexander Khain. "Comments on “Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?”." Journal of the Atmospheric Sciences 78, no. 1 (January 2021): 329–39. http://dx.doi.org/10.1175/jas-d-20-0218.1.

Full text
Abstract:
AbstractHere we elaborate on the deficiencies associated with the theoretical arguments and model simulations in a paper by Grabowski and Morrison (2020, hereafter GM20) that argued convective invigoration by aerosols does not exist. We show that the invigoration can be supported by both accurate theoretical analysis and explicit physics modeling with prognostic supersaturation and aerosols. Negligible invigoration by aerosols via drop freezing in GM20 was explained by a complete compensation between the heating effect from the freezing of extra liquid water and the extra loading effect during droplet ascending. But the reality is that droplet ascending then freezing occur at different locations and time scales, producing complex nonlinear responses that depend on the duration and location of the forcing. Also, this argument neglects the effect of off-loading of precipitating ice particles, increases in condensation during ascending, and riming and deposition accompanying droplet freezing. Regarding the warm-phase invigoration, the quasi-steady assumption for supersaturation as adopted in GM20 makes condensation independent of droplet number and size, therefore an incorrect interpretation of warm-phase invigoration. We illustrate that the quasi-steady assumption is invalid for updrafts of deep convective clouds in clean conditions because of the high acceleration of vertical velocity and the fast depletion of droplets by raindrop formation and accretion. Any assumption imposed on supersaturation, such as quasi-steady approximation and saturation adjustment, leads to errors in the evaluation of aerosol effects on diffusional growth and related buoyancy. Furthermore, we demonstrate that the piggybacking approach they used cannot prove or disprove the convective invigoration.
APA, Harvard, Vancouver, ISO, and other styles
35

Lebo, Z. J., and J. H. Seinfeld. "Theoretical basis for convective invigoration due to increased aerosol concentration." Atmospheric Chemistry and Physics 11, no. 11 (June 9, 2011): 5407–29. http://dx.doi.org/10.5194/acp-11-5407-2011.

Full text
Abstract:
Abstract. The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF) model as a detailed high-resolution cloud resolving model (CRM) with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments. A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be sufficient to predict small changes that result from perturbations in aerosol loading.
APA, Harvard, Vancouver, ISO, and other styles
36

Graf, H. F., J. Yang, and T. M. Wagner. "Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia." Atmospheric Chemistry and Physics 9, no. 2 (January 29, 2009): 743–56. http://dx.doi.org/10.5194/acp-9-743-2009.

Full text
Abstract:
Abstract. In 1997/1998 a severe smoke episode due to extensive biomass burning, especially of peat, was observed over Indonesia. September 1997 was the month with the highest aerosol burden. This month was simulated using the limited area model REMOTE driven at its lateral boundaries by ERA40 reanalysis data. REMOTE was extended by a new convective cloud parameterization mimicking individual clouds competing for instability energy. This allows for the interaction of aerosols, convective clouds and precipitation. Results show that in the monthly mean convective precipitation is diminished at nearly all places with high aerosol loading, but at some areas with high background humidity precipitation from large-scale clouds may over-compensate the loss in convective rainfall. The simulations revealed that both large-scale and convective clouds' microphysics are influenced by aerosols. Since aerosols are washed and rained out by rainfall, high aerosol concentrations can only persist at low rainfall rates. Hence, aerosol concentrations are not independent of the rainfall amount and in the mean the maximum absolute effects on rainfall from large scale clouds are found at intermediate aerosol concentrations. The reason for this behavior is that at high aerosol concentrations rainfall rates are small and consequently also the anomalies are small. For large-scale as well as for convective rain negative and positive anomalies are found for all aerosol concentrations. Negative anomalies dominate and are highly statistically significant especially for convective rainfall since part of the precipitation loss from large-scale clouds is compensated by moisture detrained from the convective clouds. The mean precipitation from large-scale clouds is less reduced (however still statistically significant) than rain from convective clouds. This effect is due to detrainment of cloud water from the less strongly raining convective clouds and because of the generally lower absolute amounts of rainfall from large-scale clouds. With increasing aerosol load both, convective and large scale clouds produce less rain. At very few individual time steps cases were found when polluted convective clouds produced intensified rainfall via mixed phase microphysics. However, these cases are not unequivocal and opposite results were also simulated, indicating that other than aerosol-microphysics effects have important impact on the results. Overall, the introduction of the new cumulus parameterization and aerosol-cloud interaction reduced some of the original REMOTE biases of precipitation patterns and total amount.
APA, Harvard, Vancouver, ISO, and other styles
37

Cabezon, Francisco A., Allan P. Schinckel, and Robert M. Stwalley III. "Thermal Capacity of Hog-Cooling Pad." Applied Engineering in Agriculture 33, no. 6 (2017): 891–99. http://dx.doi.org/10.13031/aea.12333.

Full text
Abstract:
Abstract. Modern hog farrowing operations have reached a state in which the environmental conditions necessary for piglets are vastly different than those required by sows. A hog-cooling pad has been developed by Purdue University researchers to alleviate thermally-induced stress in the sow. Understanding the basic thermal properties of the device is critical to the development of the technology, and this article documents the experimentation performed on the unit to measure some of those characteristics. A preliminary experimental investigation into the thermal response of the device with no external heat loading under a variety of coolant flow and temperatures is presented. The sow-cooling panel reacts as a Newtonian convective device and provides a uniform top surface temperature. The results indicate that device is highly conductive to the top panel and reasonably well insulated from the environment. Keywords: Convection, Cooling, Farrowing, Heat capacity, Swine, Thermal response.
APA, Harvard, Vancouver, ISO, and other styles
38

Lebo, Z. J., and J. H. Seinfeld. "Theoretical basis for convective invigoration due to increased aerosol concentration." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 24, 2011): 2773–842. http://dx.doi.org/10.5194/acpd-11-2773-2011.

Full text
Abstract:
Abstract. The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF) model as a detailed high-resolution cloud resolving model (CRM) with both detailed bulk and bin microphysics schemes. The bulk microphysics scheme incorporates a physically based parameterization of cloud droplet activation as well as homogeneous and heterogeneous freezing in order to explicitly resolve the possible aerosol-induced effects on the cloud microphysics. These parameterizations allow one to segregate the effects of an increase in the aerosol number concentration into enhanced cloud condensation nuclei (CCN) and/or ice nuclei (IN) concentrations using bulk microphysics. The bin microphysics scheme, with its explicit calculations of cloud particle collisions, is shown to better predict cumulative precipitation. Increases in the CCN number concentration may not have a monotonic influence on the cumulative precipitation resulting from deep convective clouds. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions and in relatively dry environments, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small, but may act to suppress precipitation. A comparison of the predictions using the bin and bulk microphysics schemes demonstrate a significant difference between the predicted precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme is shown to be unable to capture the changes in latent heating that occur as a result of changes in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that a detailed two-bulk microphysics scheme, which is more computationally efficient than bin microphysics schemes, may not be sufficient, even when coupled to a detailed activation scheme, to predict small changes that result from perturbations in aerosol loading.
APA, Harvard, Vancouver, ISO, and other styles
39

Sporre, M. K., E. Swietlicki, P. Glantz, and M. Kulmala. "A long-term satellite study of aerosol effects on convective clouds in Nordic background air." Atmospheric Chemistry and Physics Discussions 13, no. 5 (May 24, 2013): 13853–88. http://dx.doi.org/10.5194/acpd-13-13853-2013.

Full text
Abstract:
Abstract. Aerosol-cloud interactions constitute a~major uncertainty in future climate predictions. This study combines 10 yr of ground-based aerosol particle measurements from 2 Nordic background stations (Vavihill and Hyytiälä) with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data of convective clouds. The merged data are used to examine the indirect aerosol effects on convective clouds over the Nordic countries. From the satellite scenes, vertical profiles of cloud droplet effective radius (re) are created by plotting re against cloud top temperature. The profiles have been divided according to aerosol loading but also modeled meteorological parameters from the ECMWF (European Centre for Medium-Range Forecasts). Furthermore, weather radar data from the BALTEX (Baltic Sea Experiment) and ground based precipitation measurements from several ground-based meteorological measurement stations have been investigated to determine whether aerosols affect precipitation intensity and amount. Higher aerosol number concentrations result in smaller re throughout the entire profiles at both stations. Profiles associated with no or little precipitation have smaller droplets than those associated with more precipitation. Furthermore, an increase in aerosol loadings results in a suppression of precipitation rates, when the vertical extent of the clouds has been taken into account. Clouds with greater vertical extent have the highest precipitation rates and are most sensitive to aerosol perturbations. Nevertheless, meteorological parameters such as the vertical extent of the clouds, the atmospheric instability and the relative humidity in the lower atmosphere affect the amount of precipitation that reaches the ground more than the aerosols do. The combination of these ground-based and remote sensing datasets provides a unique long-term study of the effects of aerosols on convective clouds over the Nordic countries.
APA, Harvard, Vancouver, ISO, and other styles
40

Aschmann, J., and B. M. Sinnhuber. "Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints." Atmospheric Chemistry and Physics Discussions 12, no. 11 (November 22, 2012): 30283–326. http://dx.doi.org/10.5194/acpd-12-30283-2012.

Full text
Abstract:
Abstract. Very short-lived substances (VSLS) still represent a major factor of uncertainty in the quantification of stratospheric bromine loading. One of the major obstacles for short-lived source gases in contributing to the stratosphere is generally thought to be loss of inorganic bromine (Bry) in the tropical tropopause layer (TTL) due to dehydration. We use sensitivity calculations with a~three-dimensional chemistry transport model comprising a consistent parametrization of convective transport and a comprehensive chemistry scheme to investigate the associated processes. The model considers the two most important bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2). The organic bromine source gases as well as the resulting profile of inorganic bromine in the model are consistent with available observations. In contrast to its organic precursors, Bry is assumed to have a~significant sorption capacity regarding sedimenting liquid or frozen particles thus the fraction of intact source gases during their ascent through the TTL is a critical factor. We find that source gas injection is the dominant pathway into the stratosphere, about 50% of CHBr3 and 93% of CH2Br2 is able to overcome the cold point tropopause at approximately 17 km altitude, modulated by the interannual variability of the vertical transport efficiency. In fact, our sensitivity calculations indicate that the extent of source gas injection of CHBr3 is highly sensitive to the strength of convection and large-scale ascent; in contrast, modifying the photolysis or the destruction via OH yields a significantly smaller response. In principal, the same applies as well to CH2Br2, though it is considerably less responsive due to its longer lifetime. The next important aspect we identified is that the partitioning of available Bry from short-lived sources is clearly shifted away from HBr, according to our current state of knowledge the only member of the Bry family which is efficiently adsorbed on ice particles. This effect is caused by very efficient heterogeneous reactions on ice surfaces which reduce the HBr/Bry fraction below 15% at the tropical tropopause. Under these circumstances there is no significant loss of Bry due to dehydration in the model, VSLS contribute fully to stratospheric bromine. In addition, we conduct several sensitivity calculations to test the robustness of this result. If heterogeneous chemistry is ignored, the HBr/Bry fraction exceeds 50% and about 10% of bromine from VSLS is scavenged. Dehydration plays a minor role for Bry removal under the assumption that HOBr is efficiently adsorbed on ice as well since the heterogeneous reactions alter the partitioning equilibrium of Bry in favor of HOBr. In this case, up to 12% of bromine from VSLS is removed. Even in the extreme and unrealistic case that adsorbed species on ice particles are instantaneously removed the maximum loss of bromine does not exceed 25%. In conclusion, considering the average abundance of bromine short-lived source gases in convective updrafts of 6 parts per trillion by volume (pptv) we find a most likely contribution of VSLS to stratospheric bromine in the range of 4.5–6 pptv.
APA, Harvard, Vancouver, ISO, and other styles
41

Aschmann, J., and B. M. Sinnhuber. "Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints." Atmospheric Chemistry and Physics 13, no. 3 (February 1, 2013): 1203–19. http://dx.doi.org/10.5194/acp-13-1203-2013.

Full text
Abstract:
Abstract. Very short-lived substances (VSLS) still represent a major factor of uncertainty in the quantification of stratospheric bromine loading. One of the major obstacles for short-lived source gases in contributing to the stratosphere is generally thought to be loss of inorganic bromine (Bry) in the tropical tropopause layer (TTL) due to dehydration. We use sensitivity calculations with a three-dimensional chemistry transport model comprising a consistent parametrization of convective transport and a comprehensive chemistry scheme to investigate the associated processes. The model considers the two most important bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2). The organic bromine source gases as well as the resulting profile of inorganic bromine in the model are consistent with available observations. In contrast to its organic precursors, Bry is assumed to have a significant sorption capacity regarding sedimenting liquid or frozen particles thus the fraction of intact source gases during their ascent through the TTL is a critical factor. We find that source gas injection is the dominant pathway into the stratosphere, about 50% of CHBr3 and 94% of CH2Br2 is able to overcome the cold point tropopause at approximately 17 km altitude, modulated by the interannual variability of the vertical transport efficiency. In fact, our sensitivity calculations indicate that the extent of source gas injection of CHBr3 is highly sensitive to the strength of convection and large-scale ascent; in contrast, modifying the photolysis or the destruction via OH yields a significantly smaller response. In principle, the same applies as well to CH2Br2, though it is considerably less responsive due to its longer lifetime. The next important aspect we identified is that the partitioning of available Bry from short-lived sources is clearly shifted away from HBr, according to our current state of knowledge the only member of the Bry family which is efficiently adsorbed on ice particles. This effect is caused by very efficient heterogeneous reactions on ice surfaces which reduce the HBr/Bry fraction below 15% at the tropical tropopause. Under these circumstances there is no significant loss of Bry due to dehydration in the model, VSLS contribute fully to stratospheric bromine. In addition, we conduct several sensitivity calculations to test the robustness of this result. If heterogeneous chemistry is ignored, the HBr/Bry fraction exceeds 50% and about 10% of bromine from VSLS is scavenged. Dehydration plays a minor role for Bry removal under the assumption that HOBr is efficiently adsorbed on ice as well since the heterogeneous reactions alter the partitioning equilibrium of Bry in favor of HOBr. In this case, up to 12% of bromine from VSLS is removed. Even in the extreme and unrealistic case that adsorbed species on ice particles are instantaneously removed the maximum loss of bromine does not exceed 25%. Assuming 6 parts per trillion by volume (pptv) of bromine short-lived source gases in convective updrafts, a value that is supported by observational data, we find a most likely contribution of VSLS to stratospheric bromine in the range of 4.5–6 pptv.
APA, Harvard, Vancouver, ISO, and other styles
42

Dagan, Guy, Ilan Koren, Orit Altaratz, and Reuven H. Heiblum. "Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading." Atmospheric Chemistry and Physics 17, no. 12 (June 20, 2017): 7435–44. http://dx.doi.org/10.5194/acp-17-7435-2017.

Full text
Abstract:
Abstract. Large eddy simulations (LESs) with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation) and cooling of the upper part (net evaporation). Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect). On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability). The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.
APA, Harvard, Vancouver, ISO, and other styles
43

Lkhamjav, Jambajamts, Hyunho Lee, Ye-Lim Jeon, Jaemyeong Mango Seo, and Jong-Jin Baik. "Impacts of Aerosol Loading on Surface Precipitation from Deep Convective Systems over North Central Mongolia." Asia-Pacific Journal of Atmospheric Sciences 54, no. 4 (October 25, 2018): 587–98. http://dx.doi.org/10.1007/s13143-018-0080-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brunschwiler, T., J. Goicochea, H. Wolf, C. Kuemin, and B. Michel. "Formulation of Percolating Thermal Underfill by Sequential Convective Gap Filling." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (January 1, 2011): 001621–48. http://dx.doi.org/10.4071/2011dpc-wp15.

Full text
Abstract:
In 3D chip stacks, heat dissipation through wiring layers and the bonding interface contributes to the total temperature gradient. The effective thermal impedance of micro solder-ball arrays filled with a poorly-conducting silica underfill can be as high as 30 K*mm2/W, three times the value of a thermal grease interface. Efforts to improve the underfill conductivity to 5 W/(m*K) are underway, which would translate into in a significant interface-resistance reduction. To achieve thermal conductivities >1 W/(m*K), alumina particles were introduced in capillary underfills at particle loadings above the percolation threshold, but at these loading levels the high viscosity of the resulting underfill no longer permits capillary filling. We propose a novel sequential gap-filling method. Particles are suspended in a carrier fluid at a low concentration (0.1 vol%). Using forced convection, the suspension is injected into the cavity formed between the IC dies by the C4 array. A filter element at the cavity outlet triggers particle accumulation in the cavity. The particles form a percolation network with an effective thermal conductivity of >1 W/(m*K). Next an evaporation step removes the carrier fluid, and the exposed pores between the particles are refilled with a particle-free adhesive using capillary forces. Finally, the matrix is cured at 65 °C. 10x10 mm2 standard and micro-C4 cavities (>30 μm) can be completely filled in 2 min at 0.2 bar, resulting in a homogeneous volumetric fill of 36%. Percolation was identified by SEM inspection. For the micro-C4 arrays filler particles of < 10 μm were used. Uniform particle filling is precluded because of the longer filling time due to the small pore sizes. Particle trapping sites are introduced to form local stacks that provide an additional drainage network to guarantee acceptable filling times. Effective thermal-conductivity values of the percolating thermal underfill method proposed here are reported.
APA, Harvard, Vancouver, ISO, and other styles
45

Torri, Giuseppe, and Zhiming Kuang. "A Lagrangian Study of Precipitation-Driven Downdrafts*." Journal of the Atmospheric Sciences 73, no. 2 (February 1, 2016): 839–54. http://dx.doi.org/10.1175/jas-d-15-0222.1.

Full text
Abstract:
Abstract Precipitation-driven downdrafts are an important component of deep convective systems. They stabilize the atmosphere by injecting relatively cold and dry air into the boundary layer. They have also been invoked as responsible for balancing surface latent and sensible heat fluxes in the heat and moisture budget of tropical boundary layers. This study is focused on precipitation-driven downdrafts and basic aspects of their dynamics in a case of radiative–convective equilibrium. Using Lagrangian particle tracking, it is shown that such downdrafts have very low initial heights, with most parcels originating within 1.5 km from the surface. The tracking is also used to compute the contribution of downdrafts to the flux of moist static energy at the top of the boundary layer, and it is found that this is on the same order of magnitude as the contribution due to convective updrafts, but much smaller than that due to turbulent mixing across the boundary layer top in the environment. Furthermore, considering the mechanisms driving the downdrafts, it is shown that the work done by rain evaporation is less than half that done by condensate loading.
APA, Harvard, Vancouver, ISO, and other styles
46

Phillips, V. T. J., C. Andronache, B. Christner, C. E. Morris, D. C. Sands, A. Bansemer, A. Lauer, C. McNaughton, and C. Seman. "Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically." Biogeosciences 6, no. 6 (June 12, 2009): 987–1014. http://dx.doi.org/10.5194/bg-6-987-2009.

Full text
Abstract:
Abstract. An aerosol-cloud modeling framework is described to simulate the activation of ice particles and droplets by biological aerosol particles, such as airborne ice-nucleation active (INA) bacteria. It includes the empirical parameterisation of heterogeneous ice nucleation and a semi-prognostic aerosol component, which have been incorporated into a cloud-system resolving model (CSRM) with double-moment bulk microphysics. The formation of cloud liquid by soluble material coated on these partially insoluble organic aerosols is represented. It determines their partial removal from deep convective clouds by accretion onto precipitation in the cloud model. This "aerosol-cloud model" is validated for diverse cases of deep convection with contrasting aerosol conditions, against satellite, ground-based and aircraft observations. Simulations are performed with the aerosol-cloud model for a month-long period of summertime convective activity over Oklahoma. It includes three cases of continental deep convection simulated previously by Phillips and Donner (2006). Elevated concentrations of insoluble organic aerosol, boosted by a factor of 100 beyond their usual values for this continental region, are found to influence significantly the following quantities: (1) the average numbers and sizes of ice crystals and droplets in the clouds; (2) the horizontal cloud coverage in the free troposphere; (3) precipitation at the ground; and (4) incident solar insolation at the surface. This factor of 100 is plausible for natural fluctuations of the concentration of insoluble organic aerosol, in view of variability of cell concentrations for airborne bacteria seen by Lindemann et al. (1982). In nature, such boosting of the insoluble organic aerosol loading could arise from enhanced emissions of biological aerosol particles from a land surface. Surface wetness and solar insolation at the ground are meteorological quantities known to influence rates of growth of certain biological particles (e.g. bacteria). Their rates of emission into the atmosphere must depend on these same quantities, in addition to surface wind speed, turbulence and convection. Finally, the present study is the first attempt at evaluating the impacts from biological aerosols on mesoscale cloud ensembles in the literature.
APA, Harvard, Vancouver, ISO, and other styles
47

Thiagarajan, K., and R. E. Baddour. "Higher Order Wave Loading on Fixed, Slender, Surface-Piercing, Rigid Cylinders." Journal of Offshore Mechanics and Arctic Engineering 113, no. 1 (February 1, 1991): 23–29. http://dx.doi.org/10.1115/1.2919892.

Full text
Abstract:
The use of Morison’s equation together with the linear wave theory is considered a first approximation to evaluate the inline wave forces on a surface-piercing cylinder. Significant second-order forces are expected to arise from the waterline and dynamic pressure effects, even when a wave is described by the linear theory. Experiments have been carried out at the MUN (Memorial University of Newfoundland) wave tank facility to identify these second-order forces for various wave frequencies and for various cylinder diameters. A strain gage force transducer has been used for this purpose. First and second-order force components have been identified using a Fast Fourier Transform. Theoretical evaluation of wave forces involved computing components from Morison’s equation using second-order Stokes theory. The waterline forces and convective acceleration forces which contribute toward the total second-order force have also been evaluated. First-order results are in acceptance with previously established data. Theoretical considerations for second order are satisfactory. Scatter in second-order experimental results were observed. Different approaches to the second-order inertia force are compared. It is expected that the inclusion of second-order forces will lead to a better representation of wave loading on offshore structures.
APA, Harvard, Vancouver, ISO, and other styles
48

Lipolt, Andraž, Brane Širok, Marko Hočevar, and Lovrenc Novak. "Convective Drying of Sewage Sludge Layer in Through-flow." Strojniški vestnik – Journal of Mechanical Engineering 66, no. 9 (September 15, 2020): 481–93. http://dx.doi.org/10.5545/sv-jme.2020.6717.

Full text
Abstract:
Drying of the sewage sludge layer was investigated in a convective laboratory dryer at air temperatures of 65 °C and 80 °C and air speeds of 0.53 m/s and 0.83 m/s. The sludge layer was formed by loading cylindrical extrudates on a grate of 0.5 m × 0.5 m size. The drying air was directed through the layer, as typically encountered in industrial belt dryers. Under such setup, the sludge layer structure and porosity significantly affect the air flow conditions and thus the drying rates. Shrinkage and cracking of the material during drying caused changes in the layer’s porous structure, that affected the pressure drop and the drag force due to passing of air through the layer. The decreasing of drag force over time was modeled by a simple function that showed excellent agreement to the selected measured data. The sludge layer drying kinetics was determined by fitting the measured data to the most common drying models. Two models, the modified Nadhari and the Wang Singh model, were determined as most suitable for modeling of drying curves. The total drying time per kilogram of sludge was modeled as a function of drying air temperature, drying air velocity and initial sludge dry matter content. The coefficient of determination (R2) of the model is 0.944. Total drying times between 43 minutes per kilogram and 76 minutes per kilogram of sludge were obtained for the investigated range of drying air conditions.
APA, Harvard, Vancouver, ISO, and other styles
49

Damoah, R., N. Spichtinger, R. Servranckx, M. Fromm, E. W. Eloranta, I. A. Razenkov, P. James, M. Shulski, C. Forster, and A. Stohl. "A case study of pyro-convection using transport model and remote sensing data." Atmospheric Chemistry and Physics 6, no. 1 (January 26, 2006): 173–85. http://dx.doi.org/10.5194/acp-6-173-2006.

Full text
Abstract:
Abstract. Summer 2004 saw severe forest fires in Alaska and the Yukon Territory that were mostly triggered by lightning strikes. The area burned (>2.7×106 ha) in the year 2004 was the highest on record to date in Alaska. Pollutant emissions from the fires lead to violation of federal standards for air quality in Fairbanks. This paper studies deep convection events that occurred in the burning regions at the end of June 2004. The convection was likely enhanced by the strong forest fire activity (so-called pyro-convection) and penetrated into the lower stratosphere, up to about 3 km above the tropopause. Emissions from the fires did not only perturb the UT/LS locally, but also regionally. POAM data at the approximate location of Edmonton (53.5° N, 113.5° W) show that the UT/LS aerosol extinction was enhanced by a factor of 4 relative to unperturbed conditions. Simulations with the particle dispersion model FLEXPART with the deep convective transport scheme turned on showed transport of forest fire emissions into the stratosphere, in qualitatively good agreement with the enhancements seen in the POAM data. A corresponding simulation with the deep convection scheme turned off did not result in such deep vertical transport. Lidar measurements at Wisconsin on 30 June also show the presence of substantial aerosol loading in the UT/LS, up to about 13 km. In fact, the FLEXPART results suggest that this aerosol plume originated from the Yukon Territory on 25 June.
APA, Harvard, Vancouver, ISO, and other styles
50

Damoah, R., N. Spichtinger, R. Servranckx, M. Fromm, E. W. Eloranta, I. A. Razenkov, P. James, M. Shulski, C. Forster, and A. Stohl. "Transport Modelling of a pyro-convection event in Alaska." Atmospheric Chemistry and Physics Discussions 5, no. 4 (August 18, 2005): 6185–214. http://dx.doi.org/10.5194/acpd-5-6185-2005.

Full text
Abstract:
Abstract. Summer 2004 saw severe forest fires in Alaska and the Yukon Territory that were mostly triggered by lightning strikes. The area burned (>2.7×106 ha) in the year 2004 was the highest on record to date in Alaska. Pollutant emissions from the fires lead to violation of federal standards for air quality in Fairbanks. This paper studies deep convection events that occurred in the burning regions at the end of June 2004. The convection was likely enhanced by the strong forest fire activity (so-called pyro-convection) and penetrated into the lower stratosphere, up to about 3 km above the tropopause. Emissions from the fires did not only perturb the UT/LS locally, but also regionally. POAM data at the approximate location of Edmonton (53.5° N, 113.5° W) show that the UT/LS aerosol extinction was enhanced by a factor of 4 relative to unperturbed conditions. Simulations with the particle dispersion model FLEXPART with the deep convective transport scheme turned on showed transport of forest fire emissions into the stratosphere, in qualitatively good agreement with the enhancements seen in the POAM data. A corresponding simulation with the deep convection scheme turned off did not result in such deep vertical transport. Lidar measurements at Wisconsin on 30 June also show the presence of substantial aerosol loading in the UT/LS, up to about 13 km. In fact, the FLEXPART results suggest that this aerosol plume originated from the Yukon Territory on 25 June.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography