Academic literature on the topic 'Convective mass transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convective mass transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Convective mass transfer"

1

San, J. Y., W. M. Worek, and Z. Lavan. "Entropy Generation in Convective Heat Transfer and Isothermal Convective Mass Transfer." Journal of Heat Transfer 109, no. 3 (August 1, 1987): 647–52. http://dx.doi.org/10.1115/1.3248137.

Full text
Abstract:
The irreversible generation of entropy for two limiting cases of combined forced-convection heat and mass transfer in a two-dimensional channel are investigated. First, convective heat transfer in a channel with either constant heat flux or constant surface temperature boundary conditions are considered for laminar and turbulent flow. The entropy generation is minimized to yield expressions for optimum plate spacing and optimum Reynolds numbers for both boundary conditions and flow regimes. Second, isothermal convective mass transfer in a channel is considered, assuming the diffusing substance to be an ideal gas with Lewis number equal to unity. The flow is considered to be either laminar or turbulent with boundary conditions at the channel walls of either constant concentration or constant mass flux. The analogy between heat and mass transfer is used to determine the entropy generation and the relations for optimum plate spacing and Reynolds number. The applicable range of the results for both limiting cases are then investigated by non-dimensionalizing the entropy generation equation.
APA, Harvard, Vancouver, ISO, and other styles
2

Jaffrin, Michel Y. "Convective Mass Transfer in Hemodialysis." Artificial Organs 19, no. 11 (November 1995): 1162–71. http://dx.doi.org/10.1111/j.1525-1594.1995.tb02277.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiran, Palle, and S. H. Manjula. "Weakly Nonlinear Double-Diffusive Oscillatory Magneto-Convection Under Gravity Modulation." Sensor Letters 18, no. 9 (September 1, 2020): 725–38. http://dx.doi.org/10.1166/sl.2020.4281.

Full text
Abstract:
An imposed time-periodic gravity field effect on double-diffusive magneto-convection for oscillatory mode has been investigated. The gravity field consisting of steady and periodic modes. A layer is confined with an electrically conducting fluid with Boussines q approximation and heated from below cooled from above. While using the perturbation technique we study nonlinear double-diffusive convection just above the critical state of the onset convection. The growth rate of the disturbances is confined with a critical Rayleigh number to investigate oscillatory convection. Analysis of finite- amplitude convection has been derived through the complex Ginzburg-Landau equation (CGLE). The convective heat and mass transfer obtained through CGLE at third-order under solvability conditions. This convective amplitude is required to estimate heat and mass transfer in terms of the Nusselt and Sherwood numbers. It is found that increasing the frequency of modulation causes diminishing heat and mass transfer. The effect of Prandtl number Pr, magnetic Prandtl number Pm, and amplitude δ enhances heat/mass transfer. It is found that an oscillatory mode of convection enhances the heat and mass transfer than the stationary mode. Further, streamlines, isotherms, and isohalines have their usual nature on double-diffusive magnetoconvection.
APA, Harvard, Vancouver, ISO, and other styles
4

RAI, B. N., A. K. SINHA, U. K. GHOSH, S. N. GUPTA, and S. N. UPADHYAY. "FORCED CONVECTIVE MASS TRANSFER IN ANNULI." Chemical Engineering Communications 68, no. 1 (June 1988): 15–30. http://dx.doi.org/10.1080/00986448808940394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lenhoff, A. M., and E. N. Lightfoot. "Convective dispersion and interphase mass transfer." Chemical Engineering Science 41, no. 11 (1986): 2795–810. http://dx.doi.org/10.1016/0009-2509(86)80011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yadav, Dhananjay, Maimouna Al-Siyabi, Mukesh Kumar Awasthi, Salma Al-Nadhairi, Amna Al-Rahbi, Maryam Al-Subhi, Ravi Ragoju, and Krishnendu Bhattacharyya. "Chemical Reaction and Internal Heating Effects on the Double Diffusive Convection in Porous Membrane Enclosures Soaked with Maxwell Fluid." Membranes 12, no. 3 (March 18, 2022): 338. http://dx.doi.org/10.3390/membranes12030338.

Full text
Abstract:
In this paper, the joint impact of the interior heating and chemical reaction on the double diffusive convective flow in porous membrane enclosures soaked by a non-Newtonian Maxwell fluid is investigated applying linear and nonlinear stability techniques. The porous enclosures are square, slender and rectangular. Using the linear stability analysis, the expression for the critical thermal Rayleigh–Darcy number, above which the convective movement occurs, is derived analytically in terms of associated physical parameters. A nonlinear stability examination reliant on the Fourier double series is executed to calculate the convective heat and mass transports of the arrangement. It is observed that the pattern of convective activity is oscillatory only in the occurrence of a relaxation parameter and the threshold value of the relaxation parameter for the occurrence of the oscillatory pattern depends on the other physical parameters. The onset of convective instability accelerates with the increasing chemical reacting parameter, the interior heating parameter, the solute Rayleigh–Darcy number, the Lewis number, the Vadasz number, and the relaxation parameter, while it delays with the heat capacity ratio. The convective heat and mass transfers increase with the solute Rayleigh–Darcy number, the Vadasz number, the relaxation parameter, and the aspect ratio (for rectangular enclosure), while it decreases with the heat capacity ratio and the aspect ratio (for slender enclosure). Additionally, the convective heat transfer enhances with the interior heating parameter, while the convective mass transfer enhances with the chemical reacting parameter and the Lewis number. The effects of Vadasz number, heat capacity ratio, and relaxation parameter are witnessed only on the oscillatory pattern of convection and unsteady convective heat and mass transfers. Further, some existing literature results are compared with the current findings.
APA, Harvard, Vancouver, ISO, and other styles
7

Mathuriya, Goldi. "Analysis Effects of Average Value of Convective and Evaporative Heat Transfer Coefficient on Solar Cabinet Dryer for Reduction of Mass of Papad." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 1511–23. http://dx.doi.org/10.22214/ijraset.2021.39522.

Full text
Abstract:
Abstract: In this research paper, the behavior of heat and mass transfer phenomenon during greenhouse papad drying under forced convection mode has been investigated. Various experiments were performed during the month of April 2020 at SRCEM Banmore, morena (26o 34’13” N 78o 10’48” E). Experimental data obtained for forced convection greenhouse drying of papad were used to determine the constants in the Nusselt number expression by using the simple linear regression analysis and, consequently, the values of convective and evaporative heat transfer coefficients were evaluated. The average values of experimental constants C and n were determined as 0.9714 and 0.0129 respectively. The average values of convective and evaporative heat transfer coefficients were determined as 0.0886 W/m2 oC and 6.7583 W/m2 oC respectively. The experimental error in terms of percentage uncertainty was also evaluated. Keywords: Papad, Papad drying, Heat transfer coefficient, Convective, Evaporative, Forced convection greenhouse
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Wen, Li Zhang, Xiaowei Li, and Xinxin Wu. "Numerical Investigation of Natural Convective Condensation with Noncondensable Gases in the Reactor Containment after Severe Accidents." Science and Technology of Nuclear Installations 2019 (March 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/1673834.

Full text
Abstract:
The heat and mass transfer processes of natural convective condensation with noncondensable gases are very important for the passive containment cooling system of water cooled reactors. Numerical simulation of natural convective condensation with noncondensable gases was realized in the Fluent software by adding condensation models. The scaled AP600 containment condensation experiment was simulated to verify the numerical method. It was shown that the developed method can predict natural convective condensation with noncondensable gases well. The velocity, species, and density fields in the scaled AP600 containment were presented. The heat transfer rate distribution and the influences of the mass fraction of air on heat transfer rate were also analyzed. It is found that the driving force of natural convective condensation with noncondensable gases is mainly caused by the mass fraction difference but not temperature difference. The natural convective condensation with noncondensable gases in AP1000 containment was then simulated. The temperature, species, velocity, and heat flux distributions were obtained and analyzed. The upper head of the containment contributes to 35.1% of the total heat transfer rate, while its area only takes 25.4% of the total condensation area of the containment. The influences of the mass fraction of low molecular weight noncondensable gas (hydrogen) on the natural convective condensation were also discussed based on the detailed species, density, and velocity fields. The results show that addition of hydrogen (production of zirconium-water reaction after severe accident) will weaken the intensity of natural convection and the heat and mass transfer processes significantly. When hydrogen contributes to 50% mole fraction of the noncondensable gases, the heat transfer coefficient will be reduced to 45%.
APA, Harvard, Vancouver, ISO, and other styles
9

Kolmychkov, V. V. "COMPUTER SIMULATION FOR SUBCRITICAL CONVECTION IN MULTI‐COMPONENT ALLOYS." Mathematical Modelling and Analysis 11, no. 1 (March 31, 2006): 57–71. http://dx.doi.org/10.3846/13926292.2006.9637302.

Full text
Abstract:
Subcritical convection with hexagonal flow pattern is registered in 3D computer simulation of convective mass transfer in ternary solution under phase transition conditions. The calculations are evaluated by the classical theory of hydrodynamic stability and display a good agreement with linear and finite amplitude stability analysis. Key words: convective instability, subcritical convection, computer simulation.
APA, Harvard, Vancouver, ISO, and other styles
10

Barth, Christina, Mohamed Samaha, Hooman Tafreshi, and Mohamed Gad-el-Hak. "Convective Mass Transfer From Submerged Superhydrophobic Surfaces." International Journal of Flow Control 5, no. 2 (June 2013): 79–88. http://dx.doi.org/10.1260/1756-8250.5.2.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Convective mass transfer"

1

Gurniki, Francois. "turbulent convective mass transfer in electrochemical systems." Doctoral thesis, KTH, Mechanics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gurniki, François. "Turbulent convective mass transfer in electrochemical systems /." Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reichrath, Sven. "Convective heat and mass transfer in glasshouses." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lutostansky, Elizabeth McClelland. "The role of convective mass transfer in atherosclerosis." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pekdemir, Turgay. "Convective mass transfer from stationary and rotating cylinders in a jet flow." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BRUM, FABIO PAULA. "CONVECTIVE MASS TRANSFER MODEL TO PREDICT WAX DEPOSITION IN MULTIPHASE FLOW IN PIPELINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24985@1.

Full text
Abstract:
Óleos brutos altamente parafínicos podem causar problemas operacionais significativos, tais como bloqueio de um oleoduto devido à precipitação e deposição de componentes de parafina durante a produção e transporte de petróleo bruto. O custo de gerenciamento da parafina é enorme e aumenta significativamente com o aumento da produção de petróleo em áreas marítimas profundas. Mas estes custos podem ser significativamente reduzidos se a deposição de parafina em dutos puder ser prevista com precisão. Nesta pesquisa, o fenômeno de deposição foi analisado numericamente. O modelo de deslizamento foi utilizado para prever o fluxo multifásico e a deposição de parafina foi determinada a partir de um modelo de convecção. Este modelo previu com precisão as taxas de deposição de escala de laboratório em regime de fluxo laminar e turbulento. A taxa de deposição de parafina apresentou uma boa concordância com os resultados do software comercial OLGA. A comparação com a produção de petróleo de um poço real foi modelado, e bons resultados foram obtidos no impacto da queda de pressão devido à redução da área seção transversal causada pela deposição de parafina progressiva na parede do tubo. Os resultados deste trabalho mostraram uma boa consistência física e um acordo razoável com os dados experimentais e de campo comparados.
Highly waxy crude oils can cause significant operational problems such as blockage of a pipeline due to the precipitation and deposition of select wax components during the production and transportation of the crude oil. The cost of wax management is enormous and rapidly increasing because of increased oil production in deep sea areas. Wax management costs can be significantly reduced if wax deposition in pipeline can be accurately predicted. In this research, the wax deposition phenomenon was numerically investigated. The drift flux model was employed to predict the multiphase flow and the wax deposition was determined based on a convective model. This model accurately predicted the deposition rates for lab scale under laminar and turbulent flows. The wax deposition rate presented a good agreement with the results of commercial software OLGA. A comparison with an existing oil production well was performed, and good results were obtained in the impact in pressure drop due to cross section area reduction caused by progressive wax deposition on the pipe wall. The results of this work showed a good physical consistency and a reasonable agreement with the compared experimental and field data.
APA, Harvard, Vancouver, ISO, and other styles
7

Metri, Prashant G. "Mathematical Analysis of Forced Convective Flow Due to Stretching Sheet and Instabilities of Natural Convective Flow." Doctoral thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35222.

Full text
Abstract:
The investigations presented in the thesis are theoretical studies of magnetohydrodynamic flows, heat and mass transfer in Newtonian/non-Newtonian cooling liquids, due to horizontal/vertical stretching sheet. The theoretical studies include the effect of magnetic field, uniform and non-uniform heat source/sink (flow and temperature dependent heat source/sink) effects. The considered problems include flow of viscous fluids in the presence of applied magnetic field and electric field with first order chemical reactions. The viscous incompressible Newtonian fluid flow in porous medium with Darcy-Forchheimmer model, electrically conducting fluid and nanofluid is studied. We introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems such as Runge-Kutta method, Perturbation method and Differential Transform Method (DTM).   Chapter 1-2 gives a brief introduction. Chapter 3 focuses on Lie group analysis of MHD flow and heat transfer over a stretching sheet. The effects of viscous dissipation, uniform heat source/sink and MHD on heat transfer are addressed. In Chapter 4-6 we examined the laminar flow, thermocapillary flow of a nanoliquid thin film over an unsteady stretching sheet in presence of MHD and thermal Radiation in different situations. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid.  Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. In Chapter 7-9 we analyzed, heat and mass transfer in MHD, mixed convection, viscoelastic fluid flow, non-Darcian flow due to stretching sheet in presence of viscous dissipation, non-uniform heat source/sink and porous media have been investigated in different situations.  MHD and viscous dissipation have a significant influence on controlling of the dynamics.    In Chapter 10 the linear stability of Maxwell fluid-nanofluid flow in a saturated porous layer is examined theoretically when the walls of the porous layers are subjected to time-periodic temperature modulations. A modified Darcy-Maxwell model is used to describe the fluid motion, and the nanofluid model used includes the effects of the Brownian motion. The thermal conductivity and viscosity are considered to be dependent on the nanoparticle volume fraction. In Chapter 11 we studied MHD flow in a vertical double passage channel taking into account the presence of the first order chemical reactions. The governing equations are solved by using a regular perturbation technique valid for small values of the Brinkman number and a DTM valid for all values of the Brinkman number.
APA, Harvard, Vancouver, ISO, and other styles
8

Hudjetz, Stefan. "Experimental investigation of heat exchange between thermal mass and room environments." Thesis, De Montfort University, 2012. http://hdl.handle.net/2086/9021.

Full text
Abstract:
The different technologies of passive cooling concepts have to rely on a good thermal coupling between a building's thermal mass and indoor air. In many cases, the ceiling is the only surface remaining for a good coupling. Further research is necessary to investigate discrepancies between existing correlations. Therefore, the overall aim of the work described in this thesis is the investigation of heat transfer at a heated ceiling in an experimental chamber. Acoustic baffles obstruct the surface of the ceiling and impede heat transfer. However, there is nearly no published data about the effect of such baffles on heat transfer. Available results from simulations should be verified with an experimental investigation. Consequently, one of the primary aims of this work was to experimentally determine the influence of such acoustic baffles. A suitable experimental chamber has been built at Biberach University of Applied Sciences. The thesis describes the experimental chamber, the experimental programme as well as results from five different test series. With a value of ±0.1Wm⁻²K⁻¹ for larger temperature differences, uncertainty in resulting convective heat transfer coefficients for natural convection is comparable to that of results from an existing recent experimental work often recommended for use. Additionally, total heat transfer (by convection and radiation) results are presented. Results are given for natural, forced and mixed convection conditions at an unobstructed heated ceiling. Furthermore, results for acoustic baffles in both an unventilated and a ventilated chamber are shown. Natural convection results show a very good agreement with existing correlations. Under mixed convection conditions, convective heat transfer at an unobstructed ceiling decreases to the limiting case described by natural convection. Installation of acoustic baffles leads to a reduction in total heat transfer (convection and radiation) between 20% and 30% when compared to the case of an unobstructed ceiling.
APA, Harvard, Vancouver, ISO, and other styles
9

MagalhÃes, Madson Linhares. "Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573.

Full text
Abstract:
The consumption of energy is a main factor that determines the viability of any industrial process. Thermal dehydration is responsible for a high consumption of energy. In developed countries, 9 to 25% of the energy consumption of the national industry is attached to thermal dehydration. Thus, studying the dehydration process shows itself very promisor. In biological products, dehydration has a specific importance, the product conservation. The organic matter of the product and its water create a propitious medium for microorganisms proliferation that will deteriorate the product, making the product inappropriate for consumption. In this work, the modeling and simulation of a convective dehydration process using a diffusive-convective differential model solved by the finite volumes numeric method for predicting the behavior of the mean moisture content during the dehydration, defining molecular mass transfer and convective coefficients, and drawing moisture profiles of the interior of the solid. To evaluate the influence of internal and external resistances, the mass transfer Biot number was obtained. The implementation of the models of this work were made in Python using its scientific models for solving differential equations. This tool has been utilized because it is open source, has simple implementation when compared to other programming languages and has performance when performing simulations. As study of cases, experimental data of assisted convective dehydration by ultrasound of apple (Malus domestica L. var Royal Gala) cubes with 8 mm under the following operation conditions: 1, 2, 3 and 5 m/s for dehydration velocities, air flow temperature of 45ÂC and 60ÂC, presence and absence of ultrasound during the dehydration process and presence and absence of the pre-treatment with ultrasounds. The apple cubes of the experiments have 25 Â1g of mass. The dehydration has been performed until the removal of 80% of the initial mass of the cubes. The parameters, diffusivity and mass transfer coefficient, have been adjusted by Levenberg-Marquardt non-linear regression method. The results obtained in the simulations showed that the implemented model is very promisor, because it represents accurately the process. The values for diffusivity and mass transfer coefficient herein obtained were plausible. The influence of the air flow velocity, temperature and ultrasounds assistance and ultrasounds pre-treatments have been analyzed.
O consumo de energia à um fator determinante na viabilidade de qualquer processo industrial. A desidrataÃÃo tÃrmica à responsÃvel por um alto consumo de energia tÃrmica. Em paÃses desenvolvidos, o consumo da energia da indÃstria nacional à atribuÃdo, em mÃdia, entre 9-25% a desidrataÃÃo tÃrmica. Assim, o estudo do processo de secagem se mostra bastante promissor. Em produtos biolÃgicos, a secagem tem uma importÃncia especÃfica, a conservaÃÃo do produto, pois a matÃria orgÃnica do produto e a Ãgua presente nele torna este um local propÃcio para a proliferaÃÃo de micro-organismos que irÃo deteriorar o produto, tornando-o inapropriado para consumo. Neste trabalho, realizou-se a modelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos para predizer o comportamento do conteÃdo de umidade mÃdio durante a secagem de cubos, definir os coeficientes de transferÃncia de massa molecular e convectivo e encontrar os perfis do conteÃdo de umidade no interior do sÃlido. Para avaliar a influÃncia das resistÃncias interna e externa, o nÃmero de Biot de Massa foi obtido. A implementaÃÃo dos modelos deste trabalho foi realizada na ferramenta livre Python utilizando seus mÃdulos cientÃficos de resoluÃÃo de equaÃÃes diferenciais. Esta ferramenta foi utilizada porque à livre, implementaÃÃo simples, quando comparada com outras linguagens e possui alta performance nas simulaÃÃes. Como estudos de caso, utilizaram-se dados experimentais da secagem convectiva assistida por ultrassom de cubos de maÃà (Malus domestica L. var Royal Gala) com 8 mm de aresta nas seguintes condiÃÃes operacionais: velocidades de secagem: 1, 2, 3 e 5 m/s; temperatura do ar de secagem: 45 ÂC e 60 ÂC; presenÃa e ausÃncia de ultrassom durante a secagem; presenÃa e ausÃncia de etapa de prÃ-tratamento com ultrassom. Os cubos de maÃà dos experimentos tinham, em mÃdia, 25Â1 g. A secagem foi realizada atà que as amostras perdessem 80% da massa inicial. Os parÃmetros, difusividade e coeficiente de transferÃncia de massa, foram ajustados por regressÃo nÃo linear pelo mÃtodo de Levenberg-Marquardt. Os resultados obtidos nas simulaÃÃes mostraram que o modelo implementado à promissor, pois representa bem o processo. Os valores obtidos da difusividade e coeficiente de transferÃncia de massa foram plausÃveis. Analisou-se a influÃncia da velocidade do ar de secagem, da temperatura, da assistÃncia do ultrassom no processo e da utilizaÃÃo de uma etapa de prÃ-tratamento com ultrassom no processo de secagem.
APA, Harvard, Vancouver, ISO, and other styles
10

Monnerat, Sandra Mourão. "Desidratação osmotica e secagem convectiva de maçã : transferencia de massa e alterações de estrutura celular." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256446.

Full text
Abstract:
Orientador: Florencia Cecilia Menegalli
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-13T18:52:37Z (GMT). No. of bitstreams: 1 Monnerat_SandraMourao_D.pdf: 2359962 bytes, checksum: 3df7969a948ecae9b1a169de42e7087a (MD5) Previous issue date: 2009
Resumo: No presente trabalho investigou-se a desidratação osmótica de maçãs (variedade Fuji), seguida ou não de secagem convectiva com ar quente. Foram determinados perfis de concentração de água e soluto(s) em amostras de maçãs cortadas ao meio e desidratadas osmoticamente em soluções aquosas binárias (30% e 50% de sacarose, p/p) e solução ternária (50% de sacarose e 10% de cloreto de sódio, m/m), sob agitação vigorosa e temperatura constante (27°C). As amostras imersas na solução osmótica durante 2, 4 e 8 h foram fatiadas a partir da superfície plana exposta. A densidade e os teores de água, açúcares totais e redutores e cloreto de sódio foram determinados em cada fatia. O modelo matemático que descreve o transporte de cada espécie estudada (água, sacarose e cloreto de sódio) se baseia na equação de continuidade e na Lei de Fick e considera o encolhimento do tecido. O modelo foi ajustado aos dados experimentais, através do método implícito de diferenças finitas de Crank-Nicolson para determinar os coeficientes efetivos de difusão como uma função da concentração, utilizando coordenadas materiais e integrando simultaneamente as equações diferenciais de cada componente (água e sacarose ou água, sacarose e cloreto de sódio). Imagens de microscopia ótica de tecidos tratados osmoticamente, previamente pigmentados com o corante vital vermelho neutro, foram obtidas variando-se a concentração das soluções e o tempo de exposição. Os registros fotográficos retratam alterações da estrutura celular, que variam de acordo com a intensidade do processo de desidratação. A secagem convectiva com ar quente foi realizada em amostras de maçãs cortadas ao meio, frescas e previamente tratadas em solução aquosa de sacarose a 50% p/p durante 4 horas (27°C). Os perfis de umidade foram determinados a partir da superfície, após a exposição da face plana das metades das maçãs ao fluxo de ar quente (60°C ) durante 3, 6, 10 e 24 horas de secagem. O modelo matemático que descreve o transporte da água se baseia nas equações de continuidade e na Lei de Fick e considera o encolhimento do tecido e a concentração inicial não homogênea para o tecido previamente tratado. De maneira similar à desidratação osmótica, a difusividade de água na secagem também foi determinada em função da concentração, utilizando-se o método implícito de diferenças finitas de Crank-Nicolson e coordenadas materiais. Obtevese um bom ajuste dos modelos matemáticos aos dados experimentais de desidratação osmótica e de secagem. A ordem de magnitude dos coeficientes obtidos para a desidratação osmótica foi uma ou duas vezes menor que de coeficientes de difusão binários de soluções puras de sacarose e de cloreto de sódio. No caso da secagem, o comportamento da difusividade mostrou dependência significativa com a concentração de água. O tecido fresco apresentou coeficientes superiores aos do tecido pré-tratado osmoticamente além de funcionalidades distintas para diferentes tempos de secagem (inferior e superior a 6 horas). O tecido tratado apresentou um comportamento mais estável da difusividade da água no material e foi descrito por uma única função. Este fato está relacionado com as mudanças estruturais ocorridas durante a secagem, mais severas para o tecido fresco em relação ao tecido tratado
Abstract: In this study it was investigated the osmotic dehydration of apples (Fuji variety) followed or not by convective drying with hot air. Concentration profiles were determined for water and solute(s) in samples of apples cut in half and osmotically dehydrated in binary aqueous solutions (30% and 50% sucrose, w/w) and ternary solution (50% sucrose and 10% sodium chloride, w/w) under vigorous stirring and constant temperature (27°C). The samples immersed in the osmotic solution for 2, 4 and 8 h were sliced from the exposed flat surface. The density and water, total and reducing sugars and sodium chloride contents were determined in each slice. The mathematical model that describes the transport of each species studied (water, sucrose and sodium chloride) is based on the continuity equation and on the of Fick's diffusion law and considers the tissue shrinkage. The model was fitted to experimental data through the finite difference implicit method of Crank-Nicolson, to determine the effective diffusion coefficients as a function of concentration, using material coordinates and integrating simultaneously the differential equations of each component (water and sucrose or water, sucrose and sodium chloride). Light microscopy images of osmotically processed tissues previously pigmented with the vital dye neutral red, were obtained, varying the concentration of solutions and time of exposure. The photographic records show changes in cellular structure, which vary with the intensity of the dehydration process. The convective air drying was carried out on samples of apples cut in half, fresh and treated in aqueous solution of sucrose to 50% w/w for 4 hours (27°C). The moisture profiles were determined from the surface, after exposure of the flat face of half of the apples to the flow of hot air (60 ° C) during 3, 6, 10 and 24 hours of drying. The mathematical model that describes the water transport is based on the continuity equation, the Fick's diffusion law, the tissue shrinkage and the nonhomogeneous initial concentration of the previously treated tissue. Similarly to the osmotic dehydration, the water diffusivity in drying was also determined in terms of concentration, using the finite difference implicit method of Crank-Nicolson and coordinated materials. It was possible to obtained a good fit of mathematical models to experimental data of osmotic dehydration and drying. The order of magnitude of the coefficients obtained for the osmotic dehydration was one or two times lower than diffusion coefficients of pure binary solutions of sucrose and sodium chloride. For drying, the behavior of diffusivity showed significant dependence with the concentration of water. The fresh tissue showed coefficients greater than the osmotically pre-treated tissue than it needs distinct functions for different times of drying (and less than 6 hours). The treated tissue showed a more stable behavior of the water diffusivity in the material and was described by a single function. This fact is related to the structural changes during drying, more severe for the fresh tissue than for the treated tissue
Doutorado
Doutor em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Convective mass transfer"

1

Convective heat and mass transfer. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Crawford M., ed. Convective heat and mass transfer. 3rd ed. New York: McGraw-Hill, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kays, William M. Convective heat and mass transfer. 3rd ed. New York: McGraw-Hill, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghiaasiaan, S. Mostafa. Convective Heat and Mass Transfer. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

E, Crawford M., and Weigand Bernhard 1962-, eds. Convective heat and mass transfer. 4th ed. Boston: McGraw-Hill Higher Education, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

NATO Advanced Study Institute on Convective Heat and Mass Transfer in Porous Media (1990 Çeşme, Turkey). Convective heat and mass transfer in porous media. Dordrecht: Kluwer Academic, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kakaç, Sadik, Birol Kilkiş, Frank A. Kulacki, and Faruk Arinç, eds. Convective Heat and Mass Transfer in Porous Media. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3220-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Convective heat and mass transfer in rotating disk systems. Heidelberg: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shevchuk, Igor V. Convective Heat and Mass Transfer in Rotating Disk Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00718-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shevchuk, Igor V. Modelling of Convective Heat and Mass Transfer in Rotating Flows. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20961-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Convective mass transfer"

1

Karwa, Rajendra. "Convective Heat Transfer." In Heat and Mass Transfer, 381–538. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karwa, Rajendra. "Convective Heat Transfer." In Heat and Mass Transfer, 413–563. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cebeci, Tuncer. "Conservation Equations for Mass, Momentum, and Energy." In Convective Heat Transfer, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-06406-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oertel, Herbert. "Convective Heat and Mass Transfer." In Applied Mathematical Sciences, 409–53. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1564-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghiaasiaan, S. Mostafa. "Thermophysical and transport fundamentals." In Convective Heat and Mass Transfer, 1–42. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghiaasiaan, S. Mostafa. "Natural convection." In Convective Heat and Mass Transfer, 313–66. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghiaasiaan, S. Mostafa. "Mixed convection." In Convective Heat and Mass Transfer, 367–95. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghiaasiaan, S. Mostafa. "Turbulence models." In Convective Heat and Mass Transfer, 397–430. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghiaasiaan, S. Mostafa. "Flow and heat transfer in miniature flow passages." In Convective Heat and Mass Transfer, 431–91. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghiaasiaan, S. Mostafa. "Diffusion and convective transport of particles." In Convective Heat and Mass Transfer, 493–529. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Convective mass transfer"

1

Magier, T., H. Löbl, S. Großmann, M. Lakner, and T. Schoenemann. "Convective heat transfer investigations at parts of a generator circuit breaker." In HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karimi, M., and Juan Pedro Mellado. "Energetics of convective boundary layers." In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Queiroz, E. M. "ON THE TRANSIENT HEAT AND MASS TRANSFER MODELING OF DIRECT CONTACT EVAPORATORS." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moskovchenko, A. V., and V. F. Strizhov. "HEAT EXCHANGE ENHANCEMENT DUE TO UPPER CRUST CRACKlNG OF CONTINUOUS MASS DEBRIS." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mezavilla, A. C., and C. M. Hackenberg. "TRANSIENT HEAT AND MASS TRANSFER DURING THE FORMATION OF SUPERHEATED SPHERICAL BUBBLES." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hara, S. "Experimental study of water evaporation from nanoporous cylinder surface in natural convective airflow." In HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Thermo-solutal convection, Mass transfer." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maza, Diego. "Pattern formation in a mass transfer convective experiment." In EXPERIMENTAL CHAOS: 8th Experimental Chaos Conference. AIP, 2004. http://dx.doi.org/10.1063/1.1846473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kosov, V. N., Yu I. Zhavrin, S. T. Kuznetsov, and G. Akylbekova. "Convective instability and diffusion in isothermal gas mixtures." In Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.turbulheatmasstransf.870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Onishi, R., H. Takagi, and K. Takahashi. "Turbulence Effects on Cloud Droplet Collisions in Mesoscale Convective Clouds." In Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. New York: Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.1540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography