Academic literature on the topic 'Convective mass transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convective mass transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Convective mass transfer"
San, J. Y., W. M. Worek, and Z. Lavan. "Entropy Generation in Convective Heat Transfer and Isothermal Convective Mass Transfer." Journal of Heat Transfer 109, no. 3 (August 1, 1987): 647–52. http://dx.doi.org/10.1115/1.3248137.
Full textJaffrin, Michel Y. "Convective Mass Transfer in Hemodialysis." Artificial Organs 19, no. 11 (November 1995): 1162–71. http://dx.doi.org/10.1111/j.1525-1594.1995.tb02277.x.
Full textKiran, Palle, and S. H. Manjula. "Weakly Nonlinear Double-Diffusive Oscillatory Magneto-Convection Under Gravity Modulation." Sensor Letters 18, no. 9 (September 1, 2020): 725–38. http://dx.doi.org/10.1166/sl.2020.4281.
Full textRAI, B. N., A. K. SINHA, U. K. GHOSH, S. N. GUPTA, and S. N. UPADHYAY. "FORCED CONVECTIVE MASS TRANSFER IN ANNULI." Chemical Engineering Communications 68, no. 1 (June 1988): 15–30. http://dx.doi.org/10.1080/00986448808940394.
Full textLenhoff, A. M., and E. N. Lightfoot. "Convective dispersion and interphase mass transfer." Chemical Engineering Science 41, no. 11 (1986): 2795–810. http://dx.doi.org/10.1016/0009-2509(86)80011-2.
Full textYadav, Dhananjay, Maimouna Al-Siyabi, Mukesh Kumar Awasthi, Salma Al-Nadhairi, Amna Al-Rahbi, Maryam Al-Subhi, Ravi Ragoju, and Krishnendu Bhattacharyya. "Chemical Reaction and Internal Heating Effects on the Double Diffusive Convection in Porous Membrane Enclosures Soaked with Maxwell Fluid." Membranes 12, no. 3 (March 18, 2022): 338. http://dx.doi.org/10.3390/membranes12030338.
Full textMathuriya, Goldi. "Analysis Effects of Average Value of Convective and Evaporative Heat Transfer Coefficient on Solar Cabinet Dryer for Reduction of Mass of Papad." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 1511–23. http://dx.doi.org/10.22214/ijraset.2021.39522.
Full textFu, Wen, Li Zhang, Xiaowei Li, and Xinxin Wu. "Numerical Investigation of Natural Convective Condensation with Noncondensable Gases in the Reactor Containment after Severe Accidents." Science and Technology of Nuclear Installations 2019 (March 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/1673834.
Full textKolmychkov, V. V. "COMPUTER SIMULATION FOR SUBCRITICAL CONVECTION IN MULTI‐COMPONENT ALLOYS." Mathematical Modelling and Analysis 11, no. 1 (March 31, 2006): 57–71. http://dx.doi.org/10.3846/13926292.2006.9637302.
Full textBarth, Christina, Mohamed Samaha, Hooman Tafreshi, and Mohamed Gad-el-Hak. "Convective Mass Transfer From Submerged Superhydrophobic Surfaces." International Journal of Flow Control 5, no. 2 (June 2013): 79–88. http://dx.doi.org/10.1260/1756-8250.5.2.79.
Full textDissertations / Theses on the topic "Convective mass transfer"
Gurniki, Francois. "turbulent convective mass transfer in electrochemical systems." Doctoral thesis, KTH, Mechanics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3046.
Full textGurniki, François. "Turbulent convective mass transfer in electrochemical systems /." Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3046.
Full textReichrath, Sven. "Convective heat and mass transfer in glasshouses." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391213.
Full textLutostansky, Elizabeth McClelland. "The role of convective mass transfer in atherosclerosis." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15933.
Full textPekdemir, Turgay. "Convective mass transfer from stationary and rotating cylinders in a jet flow." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260621.
Full textBRUM, FABIO PAULA. "CONVECTIVE MASS TRANSFER MODEL TO PREDICT WAX DEPOSITION IN MULTIPHASE FLOW IN PIPELINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24985@1.
Full textHighly waxy crude oils can cause significant operational problems such as blockage of a pipeline due to the precipitation and deposition of select wax components during the production and transportation of the crude oil. The cost of wax management is enormous and rapidly increasing because of increased oil production in deep sea areas. Wax management costs can be significantly reduced if wax deposition in pipeline can be accurately predicted. In this research, the wax deposition phenomenon was numerically investigated. The drift flux model was employed to predict the multiphase flow and the wax deposition was determined based on a convective model. This model accurately predicted the deposition rates for lab scale under laminar and turbulent flows. The wax deposition rate presented a good agreement with the results of commercial software OLGA. A comparison with an existing oil production well was performed, and good results were obtained in the impact in pressure drop due to cross section area reduction caused by progressive wax deposition on the pipe wall. The results of this work showed a good physical consistency and a reasonable agreement with the compared experimental and field data.
Metri, Prashant G. "Mathematical Analysis of Forced Convective Flow Due to Stretching Sheet and Instabilities of Natural Convective Flow." Doctoral thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35222.
Full textHudjetz, Stefan. "Experimental investigation of heat exchange between thermal mass and room environments." Thesis, De Montfort University, 2012. http://hdl.handle.net/2086/9021.
Full textMagalhÃes, Madson Linhares. "Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573.
Full textO consumo de energia à um fator determinante na viabilidade de qualquer processo industrial. A desidrataÃÃo tÃrmica à responsÃvel por um alto consumo de energia tÃrmica. Em paÃses desenvolvidos, o consumo da energia da indÃstria nacional à atribuÃdo, em mÃdia, entre 9-25% a desidrataÃÃo tÃrmica. Assim, o estudo do processo de secagem se mostra bastante promissor. Em produtos biolÃgicos, a secagem tem uma importÃncia especÃfica, a conservaÃÃo do produto, pois a matÃria orgÃnica do produto e a Ãgua presente nele torna este um local propÃcio para a proliferaÃÃo de micro-organismos que irÃo deteriorar o produto, tornando-o inapropriado para consumo. Neste trabalho, realizou-se a modelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos para predizer o comportamento do conteÃdo de umidade mÃdio durante a secagem de cubos, definir os coeficientes de transferÃncia de massa molecular e convectivo e encontrar os perfis do conteÃdo de umidade no interior do sÃlido. Para avaliar a influÃncia das resistÃncias interna e externa, o nÃmero de Biot de Massa foi obtido. A implementaÃÃo dos modelos deste trabalho foi realizada na ferramenta livre Python utilizando seus mÃdulos cientÃficos de resoluÃÃo de equaÃÃes diferenciais. Esta ferramenta foi utilizada porque à livre, implementaÃÃo simples, quando comparada com outras linguagens e possui alta performance nas simulaÃÃes. Como estudos de caso, utilizaram-se dados experimentais da secagem convectiva assistida por ultrassom de cubos de maÃà (Malus domestica L. var Royal Gala) com 8 mm de aresta nas seguintes condiÃÃes operacionais: velocidades de secagem: 1, 2, 3 e 5 m/s; temperatura do ar de secagem: 45 ÂC e 60 ÂC; presenÃa e ausÃncia de ultrassom durante a secagem; presenÃa e ausÃncia de etapa de prÃ-tratamento com ultrassom. Os cubos de maÃà dos experimentos tinham, em mÃdia, 25Â1 g. A secagem foi realizada atà que as amostras perdessem 80% da massa inicial. Os parÃmetros, difusividade e coeficiente de transferÃncia de massa, foram ajustados por regressÃo nÃo linear pelo mÃtodo de Levenberg-Marquardt. Os resultados obtidos nas simulaÃÃes mostraram que o modelo implementado à promissor, pois representa bem o processo. Os valores obtidos da difusividade e coeficiente de transferÃncia de massa foram plausÃveis. Analisou-se a influÃncia da velocidade do ar de secagem, da temperatura, da assistÃncia do ultrassom no processo e da utilizaÃÃo de uma etapa de prÃ-tratamento com ultrassom no processo de secagem.
Monnerat, Sandra Mourão. "Desidratação osmotica e secagem convectiva de maçã : transferencia de massa e alterações de estrutura celular." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256446.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-13T18:52:37Z (GMT). No. of bitstreams: 1 Monnerat_SandraMourao_D.pdf: 2359962 bytes, checksum: 3df7969a948ecae9b1a169de42e7087a (MD5) Previous issue date: 2009
Resumo: No presente trabalho investigou-se a desidratação osmótica de maçãs (variedade Fuji), seguida ou não de secagem convectiva com ar quente. Foram determinados perfis de concentração de água e soluto(s) em amostras de maçãs cortadas ao meio e desidratadas osmoticamente em soluções aquosas binárias (30% e 50% de sacarose, p/p) e solução ternária (50% de sacarose e 10% de cloreto de sódio, m/m), sob agitação vigorosa e temperatura constante (27°C). As amostras imersas na solução osmótica durante 2, 4 e 8 h foram fatiadas a partir da superfície plana exposta. A densidade e os teores de água, açúcares totais e redutores e cloreto de sódio foram determinados em cada fatia. O modelo matemático que descreve o transporte de cada espécie estudada (água, sacarose e cloreto de sódio) se baseia na equação de continuidade e na Lei de Fick e considera o encolhimento do tecido. O modelo foi ajustado aos dados experimentais, através do método implícito de diferenças finitas de Crank-Nicolson para determinar os coeficientes efetivos de difusão como uma função da concentração, utilizando coordenadas materiais e integrando simultaneamente as equações diferenciais de cada componente (água e sacarose ou água, sacarose e cloreto de sódio). Imagens de microscopia ótica de tecidos tratados osmoticamente, previamente pigmentados com o corante vital vermelho neutro, foram obtidas variando-se a concentração das soluções e o tempo de exposição. Os registros fotográficos retratam alterações da estrutura celular, que variam de acordo com a intensidade do processo de desidratação. A secagem convectiva com ar quente foi realizada em amostras de maçãs cortadas ao meio, frescas e previamente tratadas em solução aquosa de sacarose a 50% p/p durante 4 horas (27°C). Os perfis de umidade foram determinados a partir da superfície, após a exposição da face plana das metades das maçãs ao fluxo de ar quente (60°C ) durante 3, 6, 10 e 24 horas de secagem. O modelo matemático que descreve o transporte da água se baseia nas equações de continuidade e na Lei de Fick e considera o encolhimento do tecido e a concentração inicial não homogênea para o tecido previamente tratado. De maneira similar à desidratação osmótica, a difusividade de água na secagem também foi determinada em função da concentração, utilizando-se o método implícito de diferenças finitas de Crank-Nicolson e coordenadas materiais. Obtevese um bom ajuste dos modelos matemáticos aos dados experimentais de desidratação osmótica e de secagem. A ordem de magnitude dos coeficientes obtidos para a desidratação osmótica foi uma ou duas vezes menor que de coeficientes de difusão binários de soluções puras de sacarose e de cloreto de sódio. No caso da secagem, o comportamento da difusividade mostrou dependência significativa com a concentração de água. O tecido fresco apresentou coeficientes superiores aos do tecido pré-tratado osmoticamente além de funcionalidades distintas para diferentes tempos de secagem (inferior e superior a 6 horas). O tecido tratado apresentou um comportamento mais estável da difusividade da água no material e foi descrito por uma única função. Este fato está relacionado com as mudanças estruturais ocorridas durante a secagem, mais severas para o tecido fresco em relação ao tecido tratado
Abstract: In this study it was investigated the osmotic dehydration of apples (Fuji variety) followed or not by convective drying with hot air. Concentration profiles were determined for water and solute(s) in samples of apples cut in half and osmotically dehydrated in binary aqueous solutions (30% and 50% sucrose, w/w) and ternary solution (50% sucrose and 10% sodium chloride, w/w) under vigorous stirring and constant temperature (27°C). The samples immersed in the osmotic solution for 2, 4 and 8 h were sliced from the exposed flat surface. The density and water, total and reducing sugars and sodium chloride contents were determined in each slice. The mathematical model that describes the transport of each species studied (water, sucrose and sodium chloride) is based on the continuity equation and on the of Fick's diffusion law and considers the tissue shrinkage. The model was fitted to experimental data through the finite difference implicit method of Crank-Nicolson, to determine the effective diffusion coefficients as a function of concentration, using material coordinates and integrating simultaneously the differential equations of each component (water and sucrose or water, sucrose and sodium chloride). Light microscopy images of osmotically processed tissues previously pigmented with the vital dye neutral red, were obtained, varying the concentration of solutions and time of exposure. The photographic records show changes in cellular structure, which vary with the intensity of the dehydration process. The convective air drying was carried out on samples of apples cut in half, fresh and treated in aqueous solution of sucrose to 50% w/w for 4 hours (27°C). The moisture profiles were determined from the surface, after exposure of the flat face of half of the apples to the flow of hot air (60 ° C) during 3, 6, 10 and 24 hours of drying. The mathematical model that describes the water transport is based on the continuity equation, the Fick's diffusion law, the tissue shrinkage and the nonhomogeneous initial concentration of the previously treated tissue. Similarly to the osmotic dehydration, the water diffusivity in drying was also determined in terms of concentration, using the finite difference implicit method of Crank-Nicolson and coordinated materials. It was possible to obtained a good fit of mathematical models to experimental data of osmotic dehydration and drying. The order of magnitude of the coefficients obtained for the osmotic dehydration was one or two times lower than diffusion coefficients of pure binary solutions of sucrose and sodium chloride. For drying, the behavior of diffusivity showed significant dependence with the concentration of water. The fresh tissue showed coefficients greater than the osmotically pre-treated tissue than it needs distinct functions for different times of drying (and less than 6 hours). The treated tissue showed a more stable behavior of the water diffusivity in the material and was described by a single function. This fact is related to the structural changes during drying, more severe for the fresh tissue than for the treated tissue
Doutorado
Doutor em Engenharia de Alimentos
Books on the topic "Convective mass transfer"
E, Crawford M., ed. Convective heat and mass transfer. 3rd ed. New York: McGraw-Hill, 1993.
Find full textKays, William M. Convective heat and mass transfer. 3rd ed. New York: McGraw-Hill, 1993.
Find full textGhiaasiaan, S. Mostafa. Convective Heat and Mass Transfer. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758.
Full textE, Crawford M., and Weigand Bernhard 1962-, eds. Convective heat and mass transfer. 4th ed. Boston: McGraw-Hill Higher Education, 2005.
Find full textNATO Advanced Study Institute on Convective Heat and Mass Transfer in Porous Media (1990 Çeşme, Turkey). Convective heat and mass transfer in porous media. Dordrecht: Kluwer Academic, 1991.
Find full textKakaç, Sadik, Birol Kilkiş, Frank A. Kulacki, and Faruk Arinç, eds. Convective Heat and Mass Transfer in Porous Media. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3220-6.
Full textConvective heat and mass transfer in rotating disk systems. Heidelberg: Springer, 2009.
Find full textShevchuk, Igor V. Convective Heat and Mass Transfer in Rotating Disk Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00718-7.
Full textShevchuk, Igor V. Modelling of Convective Heat and Mass Transfer in Rotating Flows. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20961-6.
Full textBook chapters on the topic "Convective mass transfer"
Karwa, Rajendra. "Convective Heat Transfer." In Heat and Mass Transfer, 381–538. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_7.
Full textKarwa, Rajendra. "Convective Heat Transfer." In Heat and Mass Transfer, 413–563. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_7.
Full textCebeci, Tuncer. "Conservation Equations for Mass, Momentum, and Energy." In Convective Heat Transfer, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-06406-1_2.
Full textOertel, Herbert. "Convective Heat and Mass Transfer." In Applied Mathematical Sciences, 409–53. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1564-1_7.
Full textGhiaasiaan, S. Mostafa. "Thermophysical and transport fundamentals." In Convective Heat and Mass Transfer, 1–42. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-1.
Full textGhiaasiaan, S. Mostafa. "Natural convection." In Convective Heat and Mass Transfer, 313–66. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-10.
Full textGhiaasiaan, S. Mostafa. "Mixed convection." In Convective Heat and Mass Transfer, 367–95. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-11.
Full textGhiaasiaan, S. Mostafa. "Turbulence models." In Convective Heat and Mass Transfer, 397–430. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-12.
Full textGhiaasiaan, S. Mostafa. "Flow and heat transfer in miniature flow passages." In Convective Heat and Mass Transfer, 431–91. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-13.
Full textGhiaasiaan, S. Mostafa. "Diffusion and convective transport of particles." In Convective Heat and Mass Transfer, 493–529. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Heat transfer: CRC Press, 2018. http://dx.doi.org/10.1201/9781351112758-14.
Full textConference papers on the topic "Convective mass transfer"
Magier, T., H. Löbl, S. Großmann, M. Lakner, and T. Schoenemann. "Convective heat transfer investigations at parts of a generator circuit breaker." In HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060381.
Full textKarimi, M., and Juan Pedro Mellado. "Energetics of convective boundary layers." In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.610.
Full textQueiroz, E. M. "ON THE TRANSIENT HEAT AND MASS TRANSFER MODELING OF DIRECT CONTACT EVAPORATORS." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.180.
Full textMoskovchenko, A. V., and V. F. Strizhov. "HEAT EXCHANGE ENHANCEMENT DUE TO UPPER CRUST CRACKlNG OF CONTINUOUS MASS DEBRIS." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.210.
Full textMezavilla, A. C., and C. M. Hackenberg. "TRANSIENT HEAT AND MASS TRANSFER DURING THE FORMATION OF SUPERHEATED SPHERICAL BUBBLES." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.380.
Full textHara, S. "Experimental study of water evaporation from nanoporous cylinder surface in natural convective airflow." In HEAT AND MASS TRANSFER 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/ht060451.
Full text"Thermo-solutal convection, Mass transfer." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.660.
Full textMaza, Diego. "Pattern formation in a mass transfer convective experiment." In EXPERIMENTAL CHAOS: 8th Experimental Chaos Conference. AIP, 2004. http://dx.doi.org/10.1063/1.1846473.
Full textKosov, V. N., Yu I. Zhavrin, S. T. Kuznetsov, and G. Akylbekova. "Convective instability and diffusion in isothermal gas mixtures." In Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.turbulheatmasstransf.870.
Full textOnishi, R., H. Takagi, and K. Takahashi. "Turbulence Effects on Cloud Droplet Collisions in Mesoscale Convective Clouds." In Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. New York: Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.1540.
Full text