Academic literature on the topic 'Conventional Bainite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conventional Bainite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Conventional Bainite"

1

Pei, Wei, Wei Liu, Yue Zhang, Rongjian Qie, and Aimin Zhao. "Study on Kinetics of Transformation in Medium Carbon Steel Bainite at Different Isothermal Temperatures." Materials 14, no. 11 (2021): 2721. http://dx.doi.org/10.3390/ma14112721.

Full text
Abstract:
Ultra-fine carbide-free bainitic (UCFB) steel, also known as nano-bainite (NB) steel, is composed of bainitic ferrite laths with nanoscale thickness and carbon-rich film-like retained austenite located between laths. The bainite transformation kinetic model can accurately describe the bainite transformation kinetics in conventional austempering (CA) processes based on the shear mechanism combined with the dilatometer test. UCFB steels with medium and high carbon composition are designed in this work to systematically study the transformation kinetics of bainite, and the evolution of its microstructure and properties, and reveal the influence of heat treatment processes on the microstructure and properties the UCFB steels. The results show that the activation energy for BF nucleation decreases during the CA process and isothermal transformation temperature decreases. The bainite transformation is first nucleated at the grain boundaries, and then nucleated at the newly formed bainitic ferrite/austenite interface.
APA, Harvard, Vancouver, ISO, and other styles
2

Zajac, Stanislaw, Volker Schwinn, and K. H. Tacke. "Characterisation and Quantification of Complex Bainitic Microstructures in High and Ultra-High Strength Linepipe Steels." Materials Science Forum 500-501 (November 2005): 387–94. http://dx.doi.org/10.4028/www.scientific.net/msf.500-501.387.

Full text
Abstract:
This paper provides a detailed description of complex bainitic microstructures obtained during the recent development of low carbon linepipe steels with strengths in the range of X100 to X120. New experimental techniques based on a high resolution FEG-SEM and EBSD have been used to characterise and quantify the mixture of ultrafine bainitic ferrite and nanosize second phases in these steels. It was found that the occurrence of incomplete transformation generates new, previously unexplored bainitic microstructures with a wealth of microstructural features that is beyond classification based on conventional concepts. Clear differences in distributions of boundary misorientations and effective grain size were noted between upper, lower and granular bainites. Based on these results a new classification scheme and definition of bainite is proposed.
APA, Harvard, Vancouver, ISO, and other styles
3

Bevilaqua, William Lemos, Jérémy Epp, Heiner Meyer, et al. "Revealing the Dynamic Transformation of Austenite to Bainite during Uniaxial Warm Compression through In-Situ Synchrotron X-ray Diffraction." Metals 11, no. 3 (2021): 467. http://dx.doi.org/10.3390/met11030467.

Full text
Abstract:
In this work, the microstructural evolution during the dynamic transformation of austenite to bainite was directly observed by in-situ high energy synchrotron X-ray diffraction measurements during warm uniaxial compression performed at the P07 beamline of PETRA III, DESY (Deutsches Elektronen-Synchrotron). Plastic deformation triggers the phase transformation, which is continuously stimulated by the introduction of dynamic dislocations into the austenite. This scenario accelerates the kinetics of bainite formation in comparison with conventional isothermal treatment. No mechanical stabilization of austenite was observed during dynamic transformation. Evidence of carbon partitioning between phases during plastic deformation was obtained. Further post-process investigations suggest that the bainitic microstructure developed during compression is oriented perpendicular to the loading direction. The findings open up new possibilities to design carbide-free bainitic microstructures directly via thermomechanical processing.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhadeshia, H. K. D. H. "Nanostructured bainite." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2113 (2009): 3–18. http://dx.doi.org/10.1098/rspa.2009.0407.

Full text
Abstract:
An alloy system based on iron is described in which it has been possible to create a high density of interfaces by heat treatment alone. The resulting structure consists of a mixture of slender platelets of bainitic ferrite, just 20–40 nm in thickness, embedded in a matrix of carbon-enriched austenite. The rate at which this structure evolves is slow by conventional standards, but this permits components to be made which are large in all three dimensions, with uniform properties throughout. The fundamental mechanisms behind this novel nanostructured steel are reviewed, along with the factors determining its strength, ductility and fracture toughness. It is argued that, although reasonable toughness can be achieved in the context of strength levels exceeding 2000 MPa, the impact toughness remains poor and that it may not be possible to improve this particular parameter.
APA, Harvard, Vancouver, ISO, and other styles
5

Mao, Xing Feng, Kai Ming Wu, Lian Deng Yao, and Zi Gang Li. "Effect of Process Parameters on Microstructural Evolution and Grain Refinement in a Low Carbon High Strength Microalloyed Dual Phase Steel." Advanced Materials Research 284-286 (July 2011): 1244–52. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1244.

Full text
Abstract:
The effects of process parameters on microstructural evolution and grain refinement are determined in a Nb-Ti microalloyed high strength dual phase steel. With the increase of cooling rate, final microstructures change from a mixture of acicular ferrite (AF)+martensite/retained austenite (M/A) to conventional bainite (CB)+M/A. Accordingly, the morphology of M/A constituent changes from an equiaxed island in AF to an elongated interlath in CB. The length and width of bainite packets become smaller with the increase of cooling rate and the decrease of deformation temperature. The length of individual bainitic ferrite plates within the packets become smaller with the increase of cooling rate and the decrease of deformation temperature, whereas the thickness of them varies slightly with them. The optimized relaxing time on grain refinement is 60 s. The reheating temperature, reduction ratio and interrupt temperature has no obvious effect on the formation of dual phase of acicular ferrite or bainite and M/A.
APA, Harvard, Vancouver, ISO, and other styles
6

Vuorinen, Esa, Jesper Vang, Malo Carradot, Pernilla Johansson, and Erik Navara. "Powder Metallurgically Produced Carbide Free Bainite." Materials Science Forum 782 (April 2014): 480–86. http://dx.doi.org/10.4028/www.scientific.net/msf.782.480.

Full text
Abstract:
Steels with carbide free bainitic (CFB) microstructures show excellent strength, toughness and wear resistance. Cast or wrought products produced by conventional metallurgy have become gradually introduced in manufacturing of numerous machine components. The required silicon addition of more than 1.5wt% in CFB-steels limits the possibilities to produce components of these steels by P/M methods. The aim of this work has been to investigate the possibilites to produce CFB-steels by pressing and sintering. Four different powder mixtures based on Distaloy DC powder have been pressed to a relative density of 90 % and sintered in a N2-H2 atmosphere at 1150 °C. The sintered components were then austenitized followed by austempering at a temperature above the martensite start temperature. Tensile and impact testing together with microhardness measurements have been performed. The microstructures were studied by optical microscopy as well as SEM and XRD-methods. The tensile strength values achieved varied from 313 to 737 MPa, the elongation after fracture were between 0.1 and 0.2%. The impact toughness values varied between 4 and 11 J. The hardness of the bainite after short sintering time varied between 630 and 710 HV and the hardness of the CFB was 350 HV after short sintering time but reached 573 after prolonged sintering. The microstructure consisted mainly of bainite, small amount of CFB mixed with austenite but also of ferrite and retained austenite after short sintering time. A longer sintering time created a structure consiting of mainly CFB with bainite and a small amount of ferrite. The most interesting applications for P/M produced CFB-containing steels should be components subjected to sliding or rolling-sliding wear loads, as gears. The hardness and strenght values achieved in the present work indicate that P/M produced CFB-steels can prove superior to conventional P/M steels in many applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Pashangeh, Shima, Hamid Reza Karimi Zarchi, Seyyed Sadegh Ghasemi Banadkouki, and Mahesh C. Somani. "Detection and Estimation of Retained Austenite in a High Strength Si-Bearing Bainite-Martensite-Retained Austenite Micro-Composite Steel after Quenching and Bainitic Holding (Q&B)." Metals 9, no. 5 (2019): 492. http://dx.doi.org/10.3390/met9050492.

Full text
Abstract:
To develop an advanced high strength steel with reasonable ductility based on low alloying concept as well as micro-composite microstructure essentially consisting of bainite, martensite and retained austenite, a Si-bearing, low alloy medium carbon sheet steel (DIN1.5025 grade) was subjected to typical quenching and bainitic holding (Q&B) type isothermal treatment in the bainitic region close to martensite start temperature (Ms) for different durations in the range 5s to 1h. While the low temperature bainite has the potential to provide the required high strength, a small fraction of finely divided austenite stabilized between the bainitic laths is expected to provide the desired elongation and improved work hardening. Various materials characterization techniques including conventional light metallography, field emission scanning electron microscopy FE-SEM, electron backscatter diffraction (EBSD), differential thermal analysis, X-ray diffraction (XRD) and vibrating sample magnetometry (VSM), were used to detect and estimate the volume fraction, size and morphology and distribution of retained austenite in the micro-composite samples. The results showed that the color light metallography technique using LePera’s etching reagent could clearly reveal the retained austenite in the microstructures of the samples isothermally held for shorter than 30s, beyond which an unambiguous distinction between the retained austenite and martensite was imprecise. On the contrary, the electron microscopy using a FE-SEM was not capable of identifying clearly the retained austenite from bainite and martensite. However, the EBSD images could successfully distinguish between bainite, martensite and retained austenite microphases with good contrast. Although the volume fractions of retained austenite measured by EBSD are in accord with those obtained by XRD and color light metallography, the XRD measurements showed somewhat higher fractions owing to its ability to acquisition and analyze the diffracted X-rays from very finely divided retained austenite, too. The differential thermal analysis and vibrating sample magnetometry techniques also confirmed the stabilization of retained austenite finely divided in bainite/martensite micro-composite microstructures. In addition, the peak temperatures and intensities corresponding to the decomposition of retained austenite were correlated with the related volume fractions and carbon contents measured by the XRD analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Sathyashankara, B. M. Gurumurthy, U. Achutha Kini, Ananda Hegde, and Ajinkya Patil. "Mechanical characteristics evaluation of dual phase and related hardening techniques on AISI 4340 steel." Journal of Mechanical Engineering and Sciences 12, no. 4 (2018): 4018–29. http://dx.doi.org/10.15282/jmes.12.4.2018.03.0349.

Full text
Abstract:
Steel has wide range of applications and is used in various machinery and general metallic components. Depending on the particular application, steels with tailorable and appropriate properties are used. This requires various methods which can be used to alter the properties based on the requirements. Generally, mechanical properties of the steel are improved by conducting the heat treatment processes. The aim of the present work is to experimentally investigate the effects of conventional heat treatments and special hardening techniques for dual phase structure on mechanical properties of AISI 4340 steel. The test specimens are machined as per ASTM standards and hardness, tensile, impact and microstructure analysis were carried out after the heat treatment processes. Dual phase heat treatment to obtain ferrite-bainite structure is performed by heating the as-bought specimen to the intercritical temperature for two hours followed by isothermal holding in fusible salt bath containing sodium nitrate and sodium nitrite at subcritical temperature for 30 minutes and cooling in air to room temperature. Similarly, ferrite-martensite structure is obtained by air cooling after holding isothermally in the salt bath for 10 seconds. Ferrite-bainite steel was observed to be soft, whereas ferrite-martensite steel was relatively harder. Austempered steel has high toughness with optimum hardness and conventionally hardened steel is the hardest among all. Microstructure shows colony of bainite and martensite in ferrite matrix of ferrite-bainite and ferrite-martensite dual phase structures respectively. An increase in brittleness was observed with the increase in hardness due to the conventional hardening to display lesser impact strength compared to austempered steel.
APA, Harvard, Vancouver, ISO, and other styles
9

Maisuradze, Mikhail V., and Maksim A. Ryzhkov. "Microstructure and Mechanical Properties of the Heat Treated Hy-TUF Steel." Materials Science Forum 989 (May 2020): 324–28. http://dx.doi.org/10.4028/www.scientific.net/msf.989.324.

Full text
Abstract:
A study of the high-strength HY-TUF steel applied for the manufacturing of heavy loaded parts was carried out. The mechanical properties of the austempered HY-TUF steel were compared to the characteristics obtained after the conventional oil quenching and tempering. The upper bainite with low impact strength was formed during the austempering at 400 °C and higher. Conventional oil quenching and tempering at temperature 400...500 °С also led to the embrittlement of the steel under consideration. The best combination of toughness and strength of the HY-TUF steel was achieved after the austempering at the temperature of lower bainite formation.
APA, Harvard, Vancouver, ISO, and other styles
10

Meng, Jiang Ying, Zhi Geng Jia, Tong Liang Wang, Kai Fang Li, and Li He Qian. "Microstructure and Mechanical Properties of a Lamellar-Structured Low-Alloy TRIP Steel." Materials Science Forum 1016 (January 2021): 1188–92. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1188.

Full text
Abstract:
In this paper, we report a lamellar-structured low-alloy transformation-induced plasticity (TRIP) steel; the microstructure of the steel consists of alternate lamellae of intercritical ferrite and reverted austenite on microscale, with the latter consisting of bainitic ferrite laths and retained austenite films on nanoscale. Such a microstructure was produced by a heat treatment process similar to that for producing conventional TRIP-assisted steels, i.e. intercritical annealing followed by austempering. Nevertheless, quenched martensite rather than a mixture of ferrite and pearlite was used as the starting structure for intercritical annealing to form austenite, and the resulting austenite was then transformed to bainite by austempering treatment. This steel exhibits much enhanced strength-ductility combinations as compared with those conventional polygonal-structured low-alloy TRIP steels.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography