Academic literature on the topic 'Conventional learning method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conventional learning method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conventional learning method"
Richard, Frimpong*1 Awal Mohammed2 Francis Ohene Boateng1. "A Comparative Study Between Experiential and Conventional Teaching Methods on Students' Retention of Mathematics Concepts." International Journal of Scientific Research and Technology 2, no. 5 (2025): 190–94. https://doi.org/10.5281/zenodo.15349652.
Full textRohmawati, Lutfi. "PENGARUH METODE PEMBELAJARAN IOC (INSIDE OUTSIDE CIRCLE) TERHADAP KEAKTIFAN DAN PRESTASI BELAJAR SISWA (Studi Eksperimen Siswa Kelas X SMA NU Widasari pada Mata Pelajaran Ekonomi)." Equilibrium: Jurnal Penelitian Pendidikan dan Ekonomi 15, no. 02 (2019): 1–15. http://dx.doi.org/10.25134/equi.v15i02.1615.
Full textGolubinskiy, Andrey, and Andrey Tolstykh. "Hybrid method of conventional neural network training." Informatics and Automation 20, no. 2 (2021): 463–90. http://dx.doi.org/10.15622/ia.2021.20.2.8.
Full textKusuma, Sumardiansyah Perdana. "Pengaruh Metode Pembelajaran dan Berpikir Kreatif Terhadap Hasil Belajar Sejarah Siswa SMA." Jurnal Pendidikan Sejarah 3, no. 2 (2014): 28. http://dx.doi.org/10.21009/jps.032.04.
Full textIto, Ryuji, Hajime Nobuhara, and Shigeru Kato. "Transfer Learning Method for Object Detection Model Using Genetic Algorithm." Journal of Advanced Computational Intelligence and Intelligent Informatics 26, no. 5 (2022): 776–83. http://dx.doi.org/10.20965/jaciii.2022.p0776.
Full textLi, Chengbo, Yu Zhang, and Charles C. Mosher. "A hybrid learning-based framework for seismic denoising." Leading Edge 38, no. 7 (2019): 542–49. http://dx.doi.org/10.1190/tle38070542.1.
Full textSaputra, Alexander Pratama, Yos Sudarman, and Marzam Marzam. "PENGGUNAAN METODE KONVENSIONAL OLEH GURU PADA PEMBELAJARAN SENI BUDAYA (MUSIK) DI SMP NEGERI 2 PAINAN." Jurnal Sendratasik 8, no. 4 (2019): 68. http://dx.doi.org/10.24036/jsu.v7i4.105110.
Full textElferida, Sormin. "Use of Practicum Learning Methods in Improving Learning Outcomes." International Journal of Social Science And Human Research 06, no. 07 (2023): 4183–90. https://doi.org/10.5281/zenodo.8153449.
Full textOctavia, Vera. "EFEKTIFITAS PEMBELAJARAN STATISTIKA DENGAN METODE TEAM ASSISTED INDIVIDUALIZATION TERHADAP HASIL BELAJAR MAHASISWA." Jurnal Pendidikan Matematika Universitas Lampung 10, no. 2 (2022): 170–85. http://dx.doi.org/10.23960/mtk/v10i2.pp170-185.
Full textBankar, Akshay, and K. P. Wani. "Development of Non-Conventional Method of Lissajous pattern for gear fault diagnosis using Machine Learning Technique." Journal of Physics: Conference Series 2601, no. 1 (2023): 012035. http://dx.doi.org/10.1088/1742-6596/2601/1/012035.
Full textDissertations / Theses on the topic "Conventional learning method"
Pizarchik, Mary. "The effects of experiential learning: An examination of three styles of experiential education programs and their implications for conventional classrooms." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3305.
Full textOwusu, James. "The impact of constructivist-based teaching method on secondary school lerners' errors in algebra." Diss., 2015. http://hdl.handle.net/10500/19207.
Full textBooks on the topic "Conventional learning method"
choi, shine, saara särmä, cristina masters, marysia zalewski, michelle lee brown, and swati parashar. Ripping, Cutting, Stitching. Lexington Books, 2023. https://doi.org/10.5040/9798881813505.
Full textSicari, Rosa, Edyta Płońska-Gościniak, and Jorge Lowenstein. Stress echocardiography: image acquisition and modalities. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0013.
Full textBook chapters on the topic "Conventional learning method"
Basheer, Firdaus, Mohamed Saleem Nazmudeen, and Fadzliwati Mohiddin. "Comparative Analysis Between Conventional Method Versus Machine Learning Method for Pipeline Condition Prediction." In Materials Forming, Machining and Tribology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70009-6_6.
Full textChang, Ruey-Feng, Yao-Sian Huang, and Yan-Wei Lee. "Texture Analysis for Breast Ultrasound Using Conventional Method and Deep Learning." In Handbook of Texture Analysis. CRC Press, 2024. http://dx.doi.org/10.1201/9780367486099-9.
Full textBlank, Andreas, Lukas Zikeli, Sebastian Reitelshöfer, Engin Karlidag, and Jörg Franke. "Augmented Virtuality Input Demonstration Refinement Improving Hybrid Manipulation Learning for Bin Picking." In Lecture Notes in Mechanical Engineering. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_32.
Full textVerhaeghe, Jarne, Jeroen Van Der Donckt, Femke Ongenae, and Sofie Van Hoecke. "Powershap: A Power-Full Shapley Feature Selection Method." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26387-3_5.
Full textNair, Rashmi S., and Rohit Agrawal. "An Integrated Approach of Conventional and Deep Learning Method for Underwater Image Enhancement." In Soft Computing for Intelligent Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1048-6_14.
Full textKawasaki, Yoshifumi, Akai Akihito, and Ryusuke Hirao. "Development of Vehicle State Estimation Method for Dedicated Sensor-Less Semi-active Suspension Using AI Technology." In Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_125.
Full textChorapalli, Jnanendra Vijay Kumar, and Soukat Kumar Das. "Sustainable Method for Determining Shear Strength Parameters by Machine Learning." In Lecture Notes in Civil Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-69626-8_120.
Full textChabalala, Shumile, Pius Owolawi, and Sunday Ojo. "CNN to BiLSTM: Enhancing Setswana Named Entity Recognition." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-85856-7_8.
Full textShimomura, Mitsuhiko, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda. "Estimation of Frictional Force Using the Thermal Images of Target Surface During Stroking." In Haptics: Science, Technology, Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_27.
Full textLee, Sangkyu, and Issam El Naqa. "Conventional Machine Learning Methods." In Machine and Deep Learning in Oncology, Medical Physics and Radiology. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83047-2_3.
Full textConference papers on the topic "Conventional learning method"
Agalya, D., and S. Kamalakkannan. "Detection of Brain Tumor Using Transfer Learning Using Conventional Autoencoder with Long Short Term Memory Method." In 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). IEEE, 2025. https://doi.org/10.1109/icmcsi64620.2025.10883552.
Full textChen, Wenwu, Shijie Feng, and Chao Zuo. "Deep-learning-enabled Temporally Super-resolved Multiplexed Fringe Projection Profilometry: High-speed kHz 3D Imaging with Low-speed Camera." In Computational Optical Sensing and Imaging. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cf4a.5.
Full textXu, Chenyu, Zhouyu Jin, Bo Xiong, You Zhou, and Xun Cao. "3D Image Restoration using Implicit Neural Representations for Brightfield and Widefield Fluorescence Microscopy." In Computational Optical Sensing and Imaging. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cth4b.5.
Full textHaghshenas, Majid, and Ranganathan Kumar. "Curvature Estimation Modeling Using Machine Learning for CLSVOF Method: Comparison With Conventional Methods." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5415.
Full textPermana, Julius I., Annisa Jusuf, Bambang K. Hadi, and Arief Yudhanto. "Stress analysis of flying V-like non-conventional aircraft structures using finite element method." In MACHINE LEARNING AND INFORMATION PROCESSING: PROCEEDINGS OF ICMLIP 2023. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0181672.
Full textTemizel, Cenk Temizel, Uchenna Odi, Nouf Al-Sulaiman, et al. "Production Forecasting in Conventional Oil Reservoirs Using Deep Learning." In SPE Western Regional Meeting. SPE, 2022. http://dx.doi.org/10.2118/209277-ms.
Full textEaglin, Gerald, and Joshua Vaughan. "Leveraging Conventional Control to Improve Performance of Systems Using Reinforcement Learning." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3307.
Full textRumenapp, Joseph. "Memoing-as-Method-and-Data: Teaching and Learning Post-Qualitative Methods in a Conventional Humanist Context." In 2019 AERA Annual Meeting. AERA, 2019. http://dx.doi.org/10.3102/1433540.
Full textRashid, Hori, Nawras Khudhur, Yusuke Hayashi, and Tsukasa Hirashima. "The Effect of Logical Argument Recomposition using Triangular Logic Model on Critical Thinking Compared to Conventional Method." In ICEEL 2022: 2022 6th International Conference on Education and E-Learning. ACM, 2022. http://dx.doi.org/10.1145/3578837.3578869.
Full textFirdos, Kauser, and Bhargavi Deshpande. "Security Analysis of Conventional Attack by Suitable RFID Based Deep Learning Method in Industrial IoT." In 2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON). IEEE, 2023. http://dx.doi.org/10.1109/indiscon58499.2023.10270683.
Full textReports on the topic "Conventional learning method"
Porto, Stella C., Jacqueline Pinto Mota, and Andrea Attis Beltran. An Integrated Approach to Impact Evaluation and Recognition of Learning. Inter-American Development Bank, 2024. http://dx.doi.org/10.18235/0013075.
Full textHedyehzadeh, Mohammadreza, Shadi Yoosefian, Dezfuli Nezhad, and Naser Safdarian. Evaluation of Conventional Machine Learning Methods for Brain Tumour Type Classification. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2020. http://dx.doi.org/10.7546/crabs.2020.06.14.
Full textKaffenberger, Michelle, Jason Silberstein, and Marla Spivack. Evaluating Systems: Three Approaches for Analyzing Education Systems and Informing Action. Research on Improving Systems of Education (RISE), 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/093.
Full textHart, Carl R., D. Keith Wilson, Chris L. Pettit, and Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, 2021. http://dx.doi.org/10.21079/11681/41182.
Full textAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full textVoegeli, Sam. PR-317-17700-WEB Accuracy of Temperature Logging for Calculating Gas Inventory in Storage Caverns. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011606.
Full textSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Full textDEEP LEARNING DAMAGE IDENTIFICATION METHOD FOR STEEL- FRAME BRACING STRUCTURES USING TIME–FREQUENCY ANALYSIS AND CONVOLUTIONAL NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.8.
Full textSUPER-RESOLUTION RECONSTRUCTION AND HIGH-PRECISION TEMPERATURE MEASUREMENT OF THERMAL IMAGES UNDER HIGH- TEMPERATURE SCENES BASED ON NEURAL NETWORK. The Hong Kong Institute of Steel Construction, 2024. http://dx.doi.org/10.18057/ijasc.2024.20.2.9.
Full text