Journal articles on the topic 'Converging Diverging Nozzles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Converging Diverging Nozzles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mzad, Hocine, and Mohamed Elguerri. "Theoretical and Experimental Investigation of Compressible Flow through Convergent–Divergent Nozzles." Advanced Materials Research 452-453 (January 2012): 1277–85. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.1277.
Full textAcar, M., R. K. Turton, and G. R. Wray. "Air Flow in Yarn Texturing Nozzles." Journal of Engineering for Industry 109, no. 3 (1987): 197–202. http://dx.doi.org/10.1115/1.3187118.
Full textFlock, Andreas K., and Ali Gülhan. "Design of converging-diverging nozzles with constant-radius centerbody." CEAS Space Journal 12, no. 2 (2019): 191–201. http://dx.doi.org/10.1007/s12567-019-00286-4.
Full textBober, W., and W. L. Chow. "Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles." Journal of Fluids Engineering 112, no. 4 (1990): 455–60. http://dx.doi.org/10.1115/1.2909425.
Full textChavan, Kanchan, B. Bhingole, J. Raut, and A. B. Pandit. "Numerical Optimization of converging diverging miniature cavitating nozzles." Journal of Physics: Conference Series 656 (December 3, 2015): 012138. http://dx.doi.org/10.1088/1742-6596/656/1/012138.
Full textShourehdeli, Shaban Alyari, Kamran Mobini, and Ali Asakereh. "Numerical Investigation of the Effects of Primary Nozzle Diverging Portion on Performance of the Supersonic Ejector of an Ejector Refrigeration Cycle." International Journal of Air-Conditioning and Refrigeration 27, no. 03 (2019): 1950030. http://dx.doi.org/10.1142/s2010132519500305.
Full textWilson, Erich A., Dan Adler, Benjamin Z. Bal-Or, Valery Sherbaum, and Michael Lichtsinder. "Optimizing Subcritical-Flow Thrust-Vectoring of Converging-Diverging Nozzles." Journal of Propulsion and Power 16, no. 2 (2000): 202–6. http://dx.doi.org/10.2514/2.5584.
Full textNiedźwiedzka, Agnieszka. "Numerical modeling of cavitation phenomenon in a two-dimensional converging-diverging nozzle using a homogeneous approach." Mechanik 91, no. 7 (2018): 520–22. http://dx.doi.org/10.17814/mechanik.2018.7.71.
Full textKrishnamurty, Venkata S., and Wei Shyy. "Effect of Wall Roughness on the Flow Through Converging - Diverging Nozzles." Journal of Propulsion and Power 13, no. 6 (1997): 753–62. http://dx.doi.org/10.2514/2.5248.
Full textOHIRA, Katsuhide, Tadashi NAKAYAMA, and Takayoshi NAGAI. "Cavitation Flow Instability of Subcooled Liquid Nitrogen in Converging-Diverging Nozzles." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 46, no. 9 (2011): 539–50. http://dx.doi.org/10.2221/jcsj.46.539.
Full textZhang, Zhenying, Lili Tian, Lirui Tong, and Yanhua Chen. "Choked Flow Characteristics of Subcritical Refrigerant Flowing Through Converging-Diverging Nozzles." Entropy 16, no. 11 (2014): 5810–21. http://dx.doi.org/10.3390/e16115810.
Full textOhira, Katsuhide, Tadashi Nakayama, and Takayoshi Nagai. "Cavitation flow instability of subcooled liquid nitrogen in converging–diverging nozzles." Cryogenics 52, no. 1 (2012): 35–44. http://dx.doi.org/10.1016/j.cryogenics.2011.11.001.
Full textJIN, ERIC, TONY HABIB, SIMON YOUSSEF, STEVE OSBORNE, and HONGHI TRAN. "Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers." March 2021 20, no. 3 (2021): 199–207. http://dx.doi.org/10.32964/tj20.3.199.
Full textJanet, Jon Paul, Yixiang Liao, and Dirk Lucas. "Heterogeneous nucleation in CFD simulation of flashing flows in converging–diverging nozzles." International Journal of Multiphase Flow 74 (September 2015): 106–17. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.04.005.
Full textMajdalani, Joseph, and Brian A. Maicke. "Direct calculation of the average local Mach number in converging–diverging nozzles." Aerospace Science and Technology 24, no. 1 (2013): 111–15. http://dx.doi.org/10.1016/j.ast.2011.10.009.
Full textBenderradji, Razik. "Effect of the fluidic injection on the flow of a converging-diverging conical nozzle." International Journal of Energetica 5, no. 1 (2020): 07. http://dx.doi.org/10.47238/ijeca.v5i1.114.
Full textBerana, Menandro Serrano, Masafumi Nakagawa, and Atsushi Harada. "Shock Waves in Supersonic Two-Phase Flow of CO2 in Converging-Diverging Nozzles." HVAC&R Research 15, no. 6 (2009): 1081–98. http://dx.doi.org/10.1080/10789669.2009.10390880.
Full textBang, Boo-Hyoung, Yong-Il Kim, Seokgyu Jeong, Youngbin Yoon, Alexander L. Yarin, and Sam S. Yoon. "Theoretical model for swirling thin film flows inside nozzles with converging-diverging shapes." Applied Mathematical Modelling 76 (December 2019): 607–16. http://dx.doi.org/10.1016/j.apm.2019.06.025.
Full textKluwick, A., and St Scheichl. "Unsteady transonic nozzle flow of dense gases." Journal of Fluid Mechanics 310 (March 10, 1996): 113–37. http://dx.doi.org/10.1017/s0022112096001759.
Full textJéger, Csaba, and Árpád Veress. "Novell Application of CFD for Rocket Engine Nozzle Optimization." Periodica Polytechnica Transportation Engineering 47, no. 2 (2018): 131–35. http://dx.doi.org/10.3311/pptr.11490.
Full textSrinivas, G., and Srinivasa Rao Potti. "Numerical Simulation of Rocket Nozzle." Advanced Materials Research 984-985 (July 2014): 1210–13. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1210.
Full textKluwick, A. "Transonic nozzle flow of dense gases." Journal of Fluid Mechanics 247 (February 1993): 661–88. http://dx.doi.org/10.1017/s0022112093000618.
Full textNakagawa, Masafumi, Menandro Serrano Berana, and Akinori Kishine. "Supersonic two-phase flow of CO2 through converging–diverging nozzles for the ejector refrigeration cycle." International Journal of Refrigeration 32, no. 6 (2009): 1195–202. http://dx.doi.org/10.1016/j.ijrefrig.2009.01.015.
Full textGeng, Lihong, Huadong Liu, and Xinli Wei. "CFD analysis of the flashing flow characteristics of subcritical refrigerant R134a through converging-diverging nozzles." International Journal of Thermal Sciences 137 (March 2019): 438–45. http://dx.doi.org/10.1016/j.ijthermalsci.2018.12.011.
Full textDuran, Ignacio, and Stephane Moreau. "Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion." Journal of Fluid Mechanics 723 (April 16, 2013): 190–231. http://dx.doi.org/10.1017/jfm.2013.118.
Full textHINATA, Sigeru, Nobuhiro HIMENO, and Kouta MIZUSIMA. "Pressure loss measurement in single and two-phase horizontal flow though diverging and converging multi nozzles." Proceedings of Conference of Hokuriku-Shinetsu Branch 2003.40 (2003): 45–46. http://dx.doi.org/10.1299/jsmehs.2003.40.45.
Full textMeyer, M., and R. Lupoi. "An analysis of the particulate flow in cold spray nozzles." Mechanical Sciences 6, no. 2 (2015): 127–36. http://dx.doi.org/10.5194/ms-6-127-2015.
Full textBanasiak, Krzysztof, and Armin Hafner. "Mathematical modelling of supersonic two-phase R744 flows through converging–diverging nozzles: The effects of phase transition models." Applied Thermal Engineering 51, no. 1-2 (2013): 635–43. http://dx.doi.org/10.1016/j.applthermaleng.2012.10.005.
Full textQin, Liang, Yang Xiang, Suyang Qin, and Hong Liu. "On the structures of compressible vortex rings generated by the compressible starting jet from converging and diverging nozzles." Aerospace Science and Technology 106 (November 2020): 106188. http://dx.doi.org/10.1016/j.ast.2020.106188.
Full textBakhtar, F., J. B. Young, A. J. White, and D. A. Simpson. "Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219, no. 12 (2005): 1315–33. http://dx.doi.org/10.1243/095440605x8379.
Full textBober, W., and W. L. Chow. "Closure to “Discussion of ‘Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles’” (1990, ASME J. Fluids Eng., 112, pp. 460–461)." Journal of Fluids Engineering 112, no. 4 (1990): 461. http://dx.doi.org/10.1115/1.2909427.
Full textBober, W., and L. W. Chow. "Closure to “Discussion of ‘Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles’” (1991, ASME J. Fluids Eng., 113, pp. 311–312)." Journal of Fluids Engineering 113, no. 2 (1991): 312. http://dx.doi.org/10.1115/1.2909501.
Full textLiffman, Kurt. "Relativistic Jet Flow from a One Dimensional Magnetic Nozzle—Analytic Solutions." Publications of the Astronomical Society of Australia 18, no. 3 (2001): 267–80. http://dx.doi.org/10.1071/as01034.
Full textJanet, Jon Paul, Yixiang Liao, and Dirk Lucas. "Corrigendum to Heterogeneous Nucleation in CFD Simulation of Flashing Flows in Converging-Diverging Nozzles International Journal of Multiphase Flow 74 (2015) 106-117." International Journal of Multiphase Flow 78 (January 2016): 148. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.08.011.
Full textVinokur, Marcel. "Discussion: “Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles” (Bober, W., and Chow, W. L., 1990, ASME J. Fluids Eng., 112, pp. 455–460)." Journal of Fluids Engineering 112, no. 4 (1990): 460–61. http://dx.doi.org/10.1115/1.2909426.
Full textLeung, J. C., and M. Epstein. "Discussion: “Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles” (Bober, W., and Chow, L. W., 1990, ASME J. Fluids Eng., 112, pp. 455–461)." Journal of Fluids Engineering 113, no. 2 (1991): 311. http://dx.doi.org/10.1115/1.2909498.
Full textEmanuel, G. "Discussion: “Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles” (Bober, W., and Chow, L. W., 1990, ASME J. Fluids Eng., 112, pp. 455–461)." Journal of Fluids Engineering 113, no. 2 (1991): 312. http://dx.doi.org/10.1115/1.2909499.
Full textWang, Zhi Wu, Kun Zhang, and Long Xi Zheng. "Numerical Simulation of the Nozzle Angles Effect on the Pressure at Thrustwall and Nozzle Outlet of PDE." Applied Mechanics and Materials 705 (December 2014): 92–95. http://dx.doi.org/10.4028/www.scientific.net/amm.705.92.
Full textHrubý, Jan, Michal Duška, Tomáš Němec, and Michal Kolovratník. "Nucleation rates of droplets in supersaturated steam and water vapour–carrier gas mixtures between 200 and 450 K." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, no. 5 (2018): 536–49. http://dx.doi.org/10.1177/0957650918770939.
Full textAl-Taie, Arkan, Hussien W. Mashi, and Ali M. Hadi. "THE EFFECT OF CONVERGENT-DIVERGENT NOZZLE PROFILE ON ITS PERFORMANCE." IRAQI JOURNAL FOR MECHANICAL AND MATERIALS ENGINEERING 19, no. 1 (2019): 14–43. http://dx.doi.org/10.32852/iqjfmme.v19i1.262.
Full textSalvador, Francisco J., Joaquin de la Morena, Marcos Carreres, and David Jaramillo. "Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 14 (2017): 1935–44. http://dx.doi.org/10.1177/0954407017692220.
Full textShariatzadeh, Omid Joneydi, Afshin Abrishamkar, and Aliakbar Joneidi Jafari. "Computational Modeling of a Typical Supersonic Converging-Diverging Nozzle and Validation by Real Measured Data." Journal of Clean Energy Technologies 3, no. 3 (2015): 220–25. http://dx.doi.org/10.7763/jocet.2015.v3.198.
Full textAmeur, Khaled, Zine Aidoun, and Mehdi Falsafioon. "Experimental Performance of a Two-Phase Ejector: Nozzle Geometry and Subcooling Effects." Inventions 5, no. 2 (2020): 23. http://dx.doi.org/10.3390/inventions5020023.
Full textZAMAN, K. B. M. Q., M. D. DAHL, T. J. BENCIC, and C. Y. LOH. "Investigation of a ‘transonic resonance’ with convergent–divergent nozzles." Journal of Fluid Mechanics 463 (July 25, 2002): 313–43. http://dx.doi.org/10.1017/s0022112002008819.
Full textQurooni, Faisal Al, Ali Vakil, Ehab Elsaadawy, and Sheldon I. Green. "Numerical simulation of an over-expanded supersonic and subsonic industrial nozzle flow relevant to flaring system." Transactions of the Canadian Society for Mechanical Engineering 43, no. 4 (2019): 471–80. http://dx.doi.org/10.1139/tcsme-2018-0230.
Full textPark, Sung Han, Jeong Whan Han, Chang Hee Lee, and Hyung Jun Kim. "Effect of Curvature on Gas-Particle Flow in Converging and Diverging Supersonic Nozzle." Solid State Phenomena 124-126 (June 2007): 1697–700. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1697.
Full textKumar, Bholu, Suresh Kant Verma, and Shantanu Srivastava. "Mixing Characteristics of Supersonic Jet from Bevelled Nozzles." International Journal of Heat and Technology 39, no. 2 (2021): 559–72. http://dx.doi.org/10.18280/ijht.390226.
Full textRodgers, C. "Impingement Starting and Power Boosting of Small Gas Turbines." Journal of Engineering for Gas Turbines and Power 107, no. 4 (1985): 821–27. http://dx.doi.org/10.1115/1.3239817.
Full textChen, Xiong, Rui Liu, and Hong Ying Du. "Erosion Study of Silica Phenolic Nozzles with Graphite Inserts in Solid Rocket Motors." Advanced Materials Research 1095 (March 2015): 573–78. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.573.
Full textJang, Sung Hwan, Sung Han Park, Jeong Whan Han, Chang Hee Lee, and Hyung Jun Kim. "Factors of Nozzle Design Affecting on Supersonic Flow in Cold Spray Process." Materials Science Forum 510-511 (March 2006): 1046–49. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.1046.
Full text