Academic literature on the topic 'Converter-Driven stability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Converter-Driven stability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Converter-Driven stability"

1

Luo, Jianqiang, Yiqing Zou, Siqi Bu, and Ulas Karaagac. "Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources." Energies 14, no. 14 (2021): 4290. http://dx.doi.org/10.3390/en14144290.

Full text
Abstract:
Renewable energy sources such as wind power and photovoltaics (PVs) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability has issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this work, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability was investigated in an IEEE 16-machine 68-bus power system. In this paper, firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by linearized state-space modeling. On this basis, converter-driven stability analysis was performed to reveal the modal resonance mechanisms between different renewable energy sources (RESs) and weak grids in the interconnected power systems and the multi-modal interaction phenomenon. Additionally, time-domain simulations were conducted to verify the effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, a multi-modal and multi-parametric optimization strategy is further proposed by retuning the controller parameters of the multi-RESs in the HRES system. The overall results demonstrate the modal interaction effect between the external AC power system and the HRES system and its various impacts on converter-driven stability.
APA, Harvard, Vancouver, ISO, and other styles
2

Quester, Matthias, Fisnik Loku, Otmane El Azzati, Leonel Noris, Yongtao Yang, and Albert Moser. "Investigating the Converter-Driven Stability of an Offshore HVDC System." Energies 14, no. 8 (2021): 2341. http://dx.doi.org/10.3390/en14082341.

Full text
Abstract:
Offshore wind farms are increasingly built in the North Sea and the number of HVDC systems transmitting the wind power to shore increases as well. To connect offshore wind farms to adjacent AC transmission systems, onshore and offshore modular multilevel converters transform the transmitted power from AC to DC and vice versa. Additionally, modern wind farms mainly use wind turbines connected to the offshore point of common coupling via voltage source converters. However, converters and their control systems can cause unwanted interactions, referred to as converter-driven stability problems. The resulting instabilities can be predicted by applying an impedance-based analysis in the frequency domain. Considering that the converter models and system data are often confidential and cannot be exchanged in real systems, this paper proposes an enhanced impedance measurement method suitable for black-box applications to investigate the interactions. A frequency response analysis identifies coupling currents depending on the control system. The currents are subsequently added to the impedance models to achieve higher accuracy. The proposed method is applied to assess an offshore HVDC system’s converter-driven stability, using impedance measurements of laboratory converters and a wind turbine converter controller replica. The results show that the onshore modular multilevel converter interacts with AC grids of moderate short-circuit ratios. However, no interactions are identified between the offshore converter and the connected wind farm.
APA, Harvard, Vancouver, ISO, and other styles
3

Yellisetti, Viswaja, and Albert Moser. "Complexity Reduction for Converter-Driven Stability Analysis in Transmission Systems." Electronics 14, no. 1 (2024): 55. https://doi.org/10.3390/electronics14010055.

Full text
Abstract:
The high penetration of power electronic converters with complex control systems is changing the power system dynamics, introducing new challenges such as converter-driven stability incidents. Traditional stability analysis methods, suitable for classical problems like voltage, frequency, and rotor angle stability in large systems, are insufficient for addressing the fast control dynamics of converters, which involve electromagnetic phenomena. These phenomena require detailed converter and network modeling, which can be performed in both the frequency and time domains, enabling the respective stability analyses to be carried out. However, frequency domain methods, based on small-signal impedances linearized at a single operating point, inherently ignore time domain phenomena like switching events and nonlinear behaviors. In contrast, time domain electromagnetic transient (EMT) simulations are effective for analyzing converter-driven stability but are computationally intensive when applied to large transmission systems with numerous use cases. Therefore, to reduce the simulation complexity in EMT tools, a complexity reduction procedure is proposed in this paper. Leveraging the advantages of the frequency domain, such as faster simulation times and information on wideband frequency characteristics of the system, this procedure utilizes the small-signal impedances and introduces a method for network reduction. The procedure also uses the frequency domain stability analysis method to screen for critical network use cases. Primarily, this procedure is a frequency domain toolchain encompassing frequency domain stability analysis and frequency domain network reduction. The result of the toolchain is a reduced network size and reduced network use cases that can be used for EMT simulations. The procedure is applied to an IEEE 39 bus system, where converter-driven stability is evaluated for two use cases. Furthermore, the network reduction method is tested on a critical use case, demonstrating reductions in network size and computation times without compromising the quality of stability analysis results.
APA, Harvard, Vancouver, ISO, and other styles
4

Kong, Le, Yaosuo Xue, Liang Qiao, and Fei Wang. "Review of Small-Signal Converter-Driven Stability Issues in Power Systems." IEEE Open Access Journal of Power and Energy 9 (2022): 29–41. http://dx.doi.org/10.1109/oajpe.2021.3137468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Jianqiang, Fei Teng, Siqi Bu, et al. "Converter-driven stability constrained unit commitment considering dynamic interactions of wind generation." International Journal of Electrical Power & Energy Systems 144 (January 2023): 108614. http://dx.doi.org/10.1016/j.ijepes.2022.108614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yao, Yao, Fidegnon Fassinou, and Tingshu Hu. "Stability and Robust Regulation of Battery-Driven Boost Converter With Simple Feedback." IEEE Transactions on Power Electronics 26, no. 9 (2011): 2614–26. http://dx.doi.org/10.1109/tpel.2011.2112781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saridaki, Georgia, Alexandros G. Paspatis, Panos Kotsampopoulos, and Nikos Hatziargyriou. "An investigation of factors affecting Fast-Interaction Converter-driven stability in Microgrids." Electric Power Systems Research 223 (October 2023): 109610. http://dx.doi.org/10.1016/j.epsr.2023.109610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jeevajothi, R., and D. Devaraj. "Voltage stability enhancement using an adaptive hysteresis controlled variable speed wind turbine driven EESG with MPPT." Journal of Energy in Southern Africa 25, no. 2 (2014): 48–60. http://dx.doi.org/10.17159/2413-3051/2014/v25i2a2669.

Full text
Abstract:
This paper investigates the enhancement in voltage stability achieved while connecting a variable speed wind turbine (VSWT) driven electrically excited synchronous generator (EESG) into power systems. The wind energy conversion system (WECS) uses an AC-DC-AC converter system with an uncontrolled rectifier, maximum power point tracking (MPPT) controlled dc-dc boost converter and adaptive hysteresis controlled voltage source converter (VSC). The MPPT controller senses the rectified voltage (VDC) and traces the maximum power point to effectively maximize the output power. With MPPT and adaptive hysteresis band current control in VSC, the DC link voltage is maintained constant under variable wind speeds and transient grid currents.The effectiveness of the proposed WECS in enhancing voltage stability is analysed on a standard IEEE 5 bus system, which includes examining the voltage magnitude, voltage collapse and reactive power injected by the systems. Simulation results show that the proposed WECS has the potential to improve the long-term voltage stability of the grid by injecting reactive power. The performance of this scheme is compared with a fixed speed squirrel cage induction generator (SCIG), a variable speed doubly-fed induction generator (DFIG) and a variable speed permanent magnet synchronous generator (PMSG).
APA, Harvard, Vancouver, ISO, and other styles
9

Quan, Xuli, Xinchun Lin, Yun Zheng, and Yong Kang. "Transient Stability Analysis of Grid-Connected Converter Driven by Imbalance Power under Non-Severe Remote Voltage Sag." Energies 14, no. 6 (2021): 1737. http://dx.doi.org/10.3390/en14061737.

Full text
Abstract:
In the transient process of the grid-connected converter (GCC), the existing research mainly focuses on the impact of the control loops. Little attention is paid to the transient stability issues driven by the imbalance between the input power and output power of GCC. This paper shows that the transient stability issues will still exist even if ignoring the dynamics of phase-locked loop (PLL) and current loop. In this paper, the models of the AC grid and the GCC are built under the assumption that the dynamics of the PLL and current loop are ignored. Then, by analyzing the transient process of GCC under non-severe remote voltage sag, the effects of the imbalance power on the transient stability of GCC are discussed. Moreover, for the GCC to operate stably after the transient process, there should be a maximum input power limit (MIPL) for GCC, and the imbalance power equation is applied in this paper to determine the transient stability of GCC. Furthermore, the effects of the current limitation on the transient stability of the GCC are also discussed. Finally, the theoretical analysis has been verified by means of simulations.
APA, Harvard, Vancouver, ISO, and other styles
10

Chouya, Ahmed. "Adaptive Sliding Mode Control with Chattering Elimination for Buck Converter Driven DC Motor." WSEAS TRANSACTIONS ON SYSTEMS 22 (February 24, 2023): 19–28. http://dx.doi.org/10.37394/23202.2023.22.3.

Full text
Abstract:
The Adaptive Sliding Mode Control (ASMC) that combines a robust proportional derivative control law for use in Buck converter driven DC motor is presented in this paper. Based on the LYAPUNOV theory, the proportional derivative control law is designed to eliminate the chattering action of the control signal. The simplicity of the proposed scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the LYAPUNOV sense if all the signals involved are uniformly bounded. Simulation studies have shown that the proposed controller shows superior tracking performance.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography