Journal articles on the topic 'Convex Function and Duality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Convex Function and Duality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Egudo, Richard R. "Multiobjective fractional duality." Bulletin of the Australian Mathematical Society 37, no. 3 (1988): 367–78. http://dx.doi.org/10.1017/s0004972700026988.
Full textWibowo, Ratno Bagus Edy, Marjono, and Eko Dedi Pramana. "Legendre-Fenchel duality in m-convexity." Hilbert Journal of Mathematical Analysis 2, no. 2 (2024): 099–105. http://dx.doi.org/10.62918/hjma.v2i2.23.
Full textZhang, Jun. "Divergence Function, Duality, and Convex Analysis." Neural Computation 16, no. 1 (2004): 159–95. http://dx.doi.org/10.1162/08997660460734047.
Full textHassan, Mansur, and Adam Baharum. "Modified Courant-Beltrami penalty function and a duality gap for invex optimization problem." International Journal for Simulation and Multidisciplinary Design Optimization 10 (2019): A10. http://dx.doi.org/10.1051/smdo/2019010.
Full textScott, C. H., T. R. Jefferson, and E. Sirri. "On duality for convex minimization with nested maxima." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 26, no. 4 (1985): 517–22. http://dx.doi.org/10.1017/s0334270000004690.
Full textKailey, N., and S. Sonali. "Higher-order symmetric duality in nondifferentiable multiobjective optimization over cones." Filomat 33, no. 3 (2019): 711–24. http://dx.doi.org/10.2298/fil1903711k.
Full textMishra, M. S., S. Nanda, and D. Acharya. "Strong pseudo-convexity and symmetric duality in nonlinear programming." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 27, no. 2 (1985): 238–44. http://dx.doi.org/10.1017/s0334270000004884.
Full textFang, D. H. "Stable Zero Lagrange Duality for DC Conic Programming." Journal of Applied Mathematics 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/606457.
Full textDubey, Ramu, and S. K. Gupta. "On duality for a second-order multiobjective fractional programming problem involving type-I functions." Georgian Mathematical Journal 26, no. 3 (2019): 393–404. http://dx.doi.org/10.1515/gmj-2017-0038.
Full textVolle, M., J. E. Martínez-Legaz, and J. Vicente-Pérez. "Duality for Closed Convex Functions and Evenly Convex Functions." Journal of Optimization Theory and Applications 167, no. 3 (2013): 985–97. http://dx.doi.org/10.1007/s10957-013-0395-4.
Full textJeyakumar, V., and B. Mond. "On generalised convex mathematical programming." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 34, no. 1 (1992): 43–53. http://dx.doi.org/10.1017/s0334270000007372.
Full textDworczak, Piotr, and Anton Kolotilin. "The persuasion duality." Theoretical Economics 19, no. 4 (2024): 1701–55. http://dx.doi.org/10.3982/te5900.
Full textLi, Juwen, Zezhong Wu, Rong Zhou та Shengyu He. "The KKT Optimality Conditions and Duality for Constrained Programming Problem with Generalized α- Convex Fuzzy Functions". Scholars Journal of Physics, Mathematics and Statistics 10, № 02 (2023): 63–86. http://dx.doi.org/10.36347/sjpms.2023.v10i02.003.
Full textKOSHI, Shozo. "Convergence of convex functions and duality." Hokkaido Mathematical Journal 14, no. 3 (1985): 399–414. http://dx.doi.org/10.14492/hokmj/1381757647.
Full textCui, Zhenyu, and Jun Deng. "Shortfall risk through Fenchel duality." International Journal of Financial Engineering 05, no. 02 (2018): 1850019. http://dx.doi.org/10.1142/s2424786318500196.
Full textPatel, Raman. "Mixed-type duality for multiobjective fractional variational control problems." International Journal of Mathematics and Mathematical Sciences 2005, no. 1 (2005): 109–24. http://dx.doi.org/10.1155/ijmms.2005.109.
Full textCraven, B. D., and B. M. Glover. "Invex functions and duality." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 39, no. 1 (1985): 1–20. http://dx.doi.org/10.1017/s1446788700022126.
Full textZhang, Xiaomin, and Zezhong Wu. "Optimality Conditions and Duality of Three Kinds of Nonlinear Fractional Programming Problems." Advances in Operations Research 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/708979.
Full textKrishnan, Arjun, Firas Rassoul-Agha, and Timo Seppäläinen. "Geodesic length and shifted weights in first-passage percolation." Communications of the American Mathematical Society 3, no. 5 (2023): 209–89. http://dx.doi.org/10.1090/cams/18.
Full textMolchanov, Ilya. "Continued fractions built from convex sets and convex functions." Communications in Contemporary Mathematics 17, no. 05 (2015): 1550003. http://dx.doi.org/10.1142/s0219199715500030.
Full textHiriart-Urruty, J. B. "A General Formula on the Conjugate of the Difference of Functions." Canadian Mathematical Bulletin 29, no. 4 (1986): 482–85. http://dx.doi.org/10.4153/cmb-1986-076-7.
Full textJeyakumar, V. "On subgradient duality with strong and weak convex functions." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 40, no. 2 (1986): 143–52. http://dx.doi.org/10.1017/s1446788700027130.
Full textSEGAL, ALEXANDER, and BOAZ A. SLOMKA. "PROJECTIONS OF LOG-CONCAVE FUNCTIONS." Communications in Contemporary Mathematics 14, no. 05 (2012): 1250036. http://dx.doi.org/10.1142/s0219199712500368.
Full textZặlinescu, C. "A comparison of constraint qualifications in infinite-dimensional convex programming revisited." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 40, no. 3 (1999): 353–78. http://dx.doi.org/10.1017/s033427000001095x.
Full textGoebel, Rafal. "Lyapunov Functions and Duality for Convex Processes." SIAM Journal on Control and Optimization 51, no. 4 (2013): 3332–50. http://dx.doi.org/10.1137/120900174.
Full textBoţ, R. I., S. M. Grad, and G. Wanka. "Fenchel’s Duality Theorem for Nearly Convex Functions." Journal of Optimization Theory and Applications 132, no. 3 (2007): 509–15. http://dx.doi.org/10.1007/s10957-007-9234-9.
Full textKaur, Arshpreet, and MaheshKumar Sharma. "Higher order symmetric duality for multiobjective fractional programming problems over cones." Yugoslav Journal of Operations Research, no. 00 (2021): 12. http://dx.doi.org/10.2298/yjor200615012k.
Full textWeir, T., and B. Mond. "Proper efficiency and duality for vector valued optimization problems." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 43, no. 1 (1987): 21–34. http://dx.doi.org/10.1017/s1446788700028937.
Full textBila, Samet, and Refail Kasımbeyli. "ON THE WEAK SUBDIFFERENTIAL, AUGMENTED NORMAL CONES AND DUALITY IN NONCONVEX OPTIMIZATION." Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13, no. 1 (2025): 67–76. https://doi.org/10.20290/estubtdb.1632350.
Full textAntczak, Tadeusz, Vinay Singh та Mohan Subba. "Optimality and duality results for (h,φ)-nondifferentiable multiobjective programming problems with (h,φ) – (b,f,ρ) -convex functions". Filomat 36, № 12 (2022): 4139–56. http://dx.doi.org/10.2298/fil2212139a.
Full textRao, Murali, and Zoran Vondraćek. "Nonlinear potentials in function spaces." Nagoya Mathematical Journal 165 (March 2002): 91–116. http://dx.doi.org/10.1017/s0027763000008163.
Full textSun, Xiangkai, Xian-Jun Long, and Liping Tang. "Regularity conditions and Farkas-type results for systems with fractional functions." RAIRO - Operations Research 54, no. 5 (2020): 1369–84. http://dx.doi.org/10.1051/ro/2019070.
Full textRoos, Kees, Marleen Balvert, Bram L. Gorissen, and Dick den Hertog. "A Universal and Structured Way to Derive Dual Optimization Problem Formulations." INFORMS Journal on Optimization 2, no. 4 (2020): 229–55. http://dx.doi.org/10.1287/ijoo.2019.0034.
Full textLee, Mi Jin, Jong Yeoul Park, and Young Chel Kwon. "Duality in the optimal control for damped hyperbolic systems with positive control." International Journal of Mathematics and Mathematical Sciences 2003, no. 27 (2003): 1703–14. http://dx.doi.org/10.1155/s0161171203209273.
Full textGupta, Anjana, Aparna Mehra, and Davinder Bhatia. "Approximate convexity in vector optimisation." Bulletin of the Australian Mathematical Society 74, no. 2 (2006): 207–18. http://dx.doi.org/10.1017/s0004972700035656.
Full textChoi, Hyungjin, Umesh Vaidya, and Yongxin Chen. "A Convex Data-Driven Approach for Nonlinear Control Synthesis." Mathematics 9, no. 19 (2021): 2445. http://dx.doi.org/10.3390/math9192445.
Full textChai, Yanfei. "Robust strong duality for nonconvex optimization problem under data uncertainty in constraint." AIMS Mathematics 6, no. 11 (2021): 12321–38. http://dx.doi.org/10.3934/math.2021713.
Full textJayswal, Anurag, Ashish Kumar Prasad, and Krishna Kummari. "Nondifferentiable Minimax Programming Problems in Complex Spaces Involving Generalized Convex Functions." Journal of Optimization 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/297015.
Full textSUNEJA, S. K., and MEETU BHATIA. "CONE CONVEX AND RELATED FUNCTIONS IN OPTIMIZATION OVER TOPOLOGICAL VECTOR SPACES." Asia-Pacific Journal of Operational Research 24, no. 06 (2007): 741–54. http://dx.doi.org/10.1142/s0217595907001504.
Full textKapoor, Muskan, Surjeet Kaur Suneja, and Meetu Bhatia Grover. "Higher order optimality and duality in fractional vector optimization over cones." Tamkang Journal of Mathematics 48, no. 3 (2017): 273–87. http://dx.doi.org/10.5556/j.tkjm.48.2017.2311.
Full textKrivosheev, Aleksandr Sergeevich, and Olesya Aleksandrovna Krivosheeva. "Interpolation and fundamental principle." Ufa Mathematical Journal 16, no. 3 (2024): 54–64. https://doi.org/10.13108/2024-16-3-54.
Full textJayswal, Anurag, I. M. Stancu-Minasian, and Dilip Kumar. "Minmax fractional programming problem involving generalized convex functions." Journal of Numerical Analysis and Approximation Theory 41, no. 1 (2012): 47–61. http://dx.doi.org/10.33993/jnaat411-968.
Full textCholamjiak, Prasit, Yeol Je Cho, and Suthep Suantai. "Strong convergence theorems for a sequence of nonexpansive mappings with gauge functions." Analele Universitatii "Ovidius" Constanta - Seria Matematica 21, no. 1 (2013): 183–200. http://dx.doi.org/10.2478/auom-2013-0011.
Full textCraven, B. D. "A note on nondifferentiable symmetric duality." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 28, no. 1 (1986): 30–35. http://dx.doi.org/10.1017/s0334270000005178.
Full textRonglu, Li, and Wang Junming. "Invariants in abstract mapping pairs." Journal of the Australian Mathematical Society 76, no. 3 (2004): 369–82. http://dx.doi.org/10.1017/s1446788700009927.
Full textLi, Lifeng, Sanyang Liu, and Jianke Zhang. "Univex Interval-Valued Mapping with Differentiability and Its Application in Nonlinear Programming." Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/383692.
Full textBhardwaj, Vinod Kumar. "Optimization of convex functions with fenchel biconjugation and duality." International Journal of Advanced Technology and Engineering Exploration 5, no. 42 (2018): 83–88. http://dx.doi.org/10.19101/ijatee.2018.542013.
Full textMartínez-Legaz, J. E., and B. F. Svaiter. "Minimal convex functions bounded below by the duality product." Proceedings of the American Mathematical Society 136, no. 03 (2007): 873–79. http://dx.doi.org/10.1090/s0002-9939-07-09176-9.
Full textDrapeau, Samuel, Andreas H. Hamel, and Michael Kupper. "Complete Duality for Quasiconvex and Convex Set-Valued Functions." Set-Valued and Variational Analysis 24, no. 2 (2015): 253–75. http://dx.doi.org/10.1007/s11228-015-0332-9.
Full textJung, Jong. "Convergence of iterative algorithms for continuous pseudocontractive mappings." Filomat 30, no. 7 (2016): 1767–77. http://dx.doi.org/10.2298/fil1607767j.
Full text