Academic literature on the topic 'Convexité (en géométrie symplectique)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convexité (en géométrie symplectique).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Convexité (en géométrie symplectique)"
Mohsen, Jean-Paul. "Transversalité quantitative en géométrie symplectique : sous-variétés et hypersurfaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 28, no. 4 (2019): 655–706. http://dx.doi.org/10.5802/afst.1612.
Full textLaudenbach, François. "Un principe de prolongement mis en défaut en géométrie symplectique." Annales de la faculté des sciences de Toulouse Mathématiques 7, no. 2 (1985): 161–67. http://dx.doi.org/10.5802/afst.621.
Full textBismut, Jean-Michel, and François Labourie. "Formules de verlinde pour les groupes simplement connexes et géométrie symplectique." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 9 (November 1997): 1009–14. http://dx.doi.org/10.1016/s0764-4442(97)89095-7.
Full textPapadopoulos, Athanase. "Deux remarques sur la géométrie symplectique de l'espace des feuilletages mesurés sur une surface." Annales de l’institut Fourier 36, no. 2 (1986): 127–41. http://dx.doi.org/10.5802/aif.1052.
Full textDissertations / Theses on the topic "Convexité (en géométrie symplectique)"
Alamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Full textThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Distexhe, Julie. "Triangulating symplectic manifolds." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287522/3/toc.pdf.
Full textIn this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Schaffhauser, Florent. "Représentations décomposables et sous-variétés lagrangiennes des espaces de modules associés aux groupes de surfaces." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00264370.
Full textDeconchy, Vincent. "Géométrie affine symplectique." Montpellier 2, 1999. http://www.theses.fr/1999MON20076.
Full textCourte, Sylvain. "H-cobordismes en géométrie symplectique." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0991/document.
Full textTo any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question remained open : if two contact manifolds have isomorphic symplectizations, are they isomorphic ? In this thesis, we construct counter-examples to this question. Indeed, in any odd dimension greater than or equal to 5, there exist non-diffeomorphic contact manifolds with isomorphic symplectisations. In addition, we construct two contact structures on a closed manifold that are not conjugate by a diffeomorphism though their symplectizations are isomorphic. The proofs are based on a well-known phenomenon in differential topology (the existence of non-trivial h-cobordisms, detected by Whitehead torsion) as well as flexibility results in symplectic geometry due to Cieliebak and Eliashberg. Another result from this thesis asserts that though these contact manifolds are not isomorphic, they become so after sufficiently many connect sum with a product of spheres
Giroux, Emmanuel. "Convexité en topologie de contact." Lyon 1, 1991. http://www.theses.fr/1991LYO10040.
Full textOpshtein, Emmanuel. "Problèmes de plongements en géométrie symplectique." Habilitation à diriger des recherches, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01011600.
Full textISAIA, JEROME. "Espaces de modules de representations de carquois avec involution munies d'une forme orthogonale ou symplectique." Nice, 1999. http://www.theses.fr/1999NICE5346.
Full textBOTTACIN, FRANCESCO. "Géométrie symplectique sur l'espace de modules de paires stables." Paris 11, 1993. http://www.theses.fr/1993PA112032.
Full textVoglaire, Yannick. "Quantification des espaces symétriques symplectiques résolubles." Thesis, Reims, 2011. http://www.theses.fr/2011REIMS032/document.
Full textThe thesis is concerned with the non-formal deformation quantization of solvable symplectic symmetric spaces. The study is motivated by a conjecture of Alan Weinstein relating the symplectic area of the so-called double triangles to the phase of some oscillatory integrals describing the quantizations. We first study the existence and uniqueness of midpoints and double triangles in symmetric spaces, and obtain in the course a result generalizing the Dixmier-Saito theorem to that case. We then introduce new tools in the study of the structure theory of symplectic symmetric spaces, namely primitive systems, symplectic reduction and double extensions. Finally, we devise a new quantization scheme for these spaces which is compatible with the above structures, and compute explicit quantization formulas for a new class of symplectic symmetric spaces. Using these, we provide new non-formal universal deformation formulas for the actions of some associated symplectic Lie groups
Books on the topic "Convexité (en géométrie symplectique)"
Albert, Claude, ed. Géométrie Symplectique et Mécanique. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0097461.
Full textservice), SpringerLink (Online, ed. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Basel: Springer Basel AG, 2011.
Find full textIntroduction to Symplectic Dirac Operators (Lecture Notes in Mathematics). Springer, 2006.
Find full textBook chapters on the topic "Convexité (en géométrie symplectique)"
Crumeyrolle, Albert. "Constante de Planck et géométrie symplectique." In Seminar on Deformations, 84–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0076147.
Full textBoyom, Nguiffo B. "Sur Quelques Questions de Géométrie Symplectique." In Mathematical Sciences Research Institute Publications, 23–36. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_3.
Full text"Géométrie symplectique et transformations canoniques." In Mathématiques & Applications, 3–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37640-2_1.
Full text"7. Géométrie du groupe symplectique, indice de Maslov." In Théorie de Morse et homologie de Floer, 169–98. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-010.
Full text"5. Ce qu’il faut savoir en géométrie symplectique." In Théorie de Morse et homologie de Floer, 111–30. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-008.
Full text"7. Géométrie du groupe symplectique, indice de Maslov." In Théorie de Morse et homologie de Floer, 169–98. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c010.
Full text"5. Ce qu’il faut savoir en géométrie symplectique." In Théorie de Morse et homologie de Floer, 111–30. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c008.
Full text