Dissertations / Theses on the topic 'Convexité (en géométrie symplectique)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Convexité (en géométrie symplectique).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Alamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Full textThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Distexhe, Julie. "Triangulating symplectic manifolds." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287522/3/toc.pdf.
Full textIn this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Schaffhauser, Florent. "Représentations décomposables et sous-variétés lagrangiennes des espaces de modules associés aux groupes de surfaces." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00264370.
Full textDeconchy, Vincent. "Géométrie affine symplectique." Montpellier 2, 1999. http://www.theses.fr/1999MON20076.
Full textCourte, Sylvain. "H-cobordismes en géométrie symplectique." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0991/document.
Full textTo any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question remained open : if two contact manifolds have isomorphic symplectizations, are they isomorphic ? In this thesis, we construct counter-examples to this question. Indeed, in any odd dimension greater than or equal to 5, there exist non-diffeomorphic contact manifolds with isomorphic symplectisations. In addition, we construct two contact structures on a closed manifold that are not conjugate by a diffeomorphism though their symplectizations are isomorphic. The proofs are based on a well-known phenomenon in differential topology (the existence of non-trivial h-cobordisms, detected by Whitehead torsion) as well as flexibility results in symplectic geometry due to Cieliebak and Eliashberg. Another result from this thesis asserts that though these contact manifolds are not isomorphic, they become so after sufficiently many connect sum with a product of spheres
Giroux, Emmanuel. "Convexité en topologie de contact." Lyon 1, 1991. http://www.theses.fr/1991LYO10040.
Full textOpshtein, Emmanuel. "Problèmes de plongements en géométrie symplectique." Habilitation à diriger des recherches, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01011600.
Full textISAIA, JEROME. "Espaces de modules de representations de carquois avec involution munies d'une forme orthogonale ou symplectique." Nice, 1999. http://www.theses.fr/1999NICE5346.
Full textBOTTACIN, FRANCESCO. "Géométrie symplectique sur l'espace de modules de paires stables." Paris 11, 1993. http://www.theses.fr/1993PA112032.
Full textVoglaire, Yannick. "Quantification des espaces symétriques symplectiques résolubles." Thesis, Reims, 2011. http://www.theses.fr/2011REIMS032/document.
Full textThe thesis is concerned with the non-formal deformation quantization of solvable symplectic symmetric spaces. The study is motivated by a conjecture of Alan Weinstein relating the symplectic area of the so-called double triangles to the phase of some oscillatory integrals describing the quantizations. We first study the existence and uniqueness of midpoints and double triangles in symmetric spaces, and obtain in the course a result generalizing the Dixmier-Saito theorem to that case. We then introduce new tools in the study of the structure theory of symplectic symmetric spaces, namely primitive systems, symplectic reduction and double extensions. Finally, we devise a new quantization scheme for these spaces which is compatible with the above structures, and compute explicit quantization formulas for a new class of symplectic symmetric spaces. Using these, we provide new non-formal universal deformation formulas for the actions of some associated symplectic Lie groups
Siby, Hassène. "Géométrie des Groupes de Lie symplectiques." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2005. http://tel.archives-ouvertes.fr/tel-00078872.
Full textDans cette thèse d'une part nous déterminons les groupes de Lie symplectiques connexes et simplement connexes de dimension $4$ et $6$ et d'autre part nous étudions une famille infinie de groupes symplectiques dans lesquels la forme symplectique est "invariantement" exacte.
Dans tous ces cas nous nous intéressons à l'existence de sous-groupes lagrangiens et parfois des sous-groupes lagrangiens transverses pour mettre en évidence des structures symplectiques affines invariantes à gauche.
La structure de ces groupes est étudiée à l'aide de l'application moment.
Künzle, Alfred F. "Une capacité symplectique pour ensembles convexes et quelques applications." Paris 9, 1990. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1990PA090024.
Full textVichery, Nicolas. "Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00780016.
Full textMennesson, Pierre. "Homologie symplectique Tⁿ-équivariante pour les variétés toriques hamiltoniennes." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS315/document.
Full textThis thesis establishes the existence of a version of Floer homology in a Morse-Bottcontext. Given a toric manifold (Wⁿ, ω, µ) and a hamiltonian H : W × S¹ → ℝ invariant bythe action of the torus Tⁿ, the periodical orbits of H are stable by the toric action.The latter admits fix points in W and hence it not free, neither one induced on the spaceof the loops of W and it is, a priori, impossible to establish a equivariant infinite-dimensionalMorse-Bott theory on C∞(S¹, W)/Tⁿ. We deal with this problem using Borel’s construction : we choose a space contractible E witha free action from the torus and look at the infinite-dimensional Morse-Bott homology of thespace (C∞(S¹, W) × E)/Tⁿ where Tⁿ act in a diagonal way on the product.We obtain an invariant for symplectic toric manifold and computes it for a closed manifold
Loustau, Brice. "La géométrie symplectique de l'espace des structures projectives complexes sur une surface." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2071/.
Full textThis thesis investigates the complex symplectic geometry of the deformation space of complex projective structures on a surface. The author attempts to give a global and unifying picture of this symplectic geometry by exploring the connections between different possible approaches. The cotangent symplectic structure given by the Schwarzian parametrization is studied in detail and compared to the canonical symplectic structure on the character variety, clarifying and generalizing a theorem of S. Kawai. Generalizations of results of C. McMullen are derived, notably quasifuchsian reciprocity. The cotangent symplectic structure is also addressed through the notion of minimal surfaces in hyperbolic 3-manifolds. Finally, the symplectic geometry is described in a Hamiltonian setting with the complex Fenchel-Nielsen coordinates on the quasifuchsian space, recovering results of I. Platis
Baguis, Pierre. "Procédures de réduction et d'induction en géométrie symplectique et de poisson : applications." Aix-Marseille 2, 1997. http://www.theses.fr/1997AIX22087.
Full textXiao, Jian. "Positivité en géométrie kählérienne." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM027/document.
Full textThe goal of this thesis is to study various positivity concepts in Kähler geometry. In particular, for a compact Kähler manifold of dimension n, we study the positivity of transcendental (1,1) and (n-1, n-1) classes. These objects include the divisor classes and curve classes over smooth complex projective varieties
Gama, Nicolas. "Géométrie des nombres et cryptanalyse de NTRU." Paris 7, 2008. http://www.theses.fr/2008PA077199.
Full textPublic-key cryptography, invented by Diffie and Hellman in 1976, is now part of everyday life: credit cards, game consoles and electronic commerce are using public key schemes. The security of certain cryptosystems, like NTRU, is based on problems arising from the geometry of numbers, including the shortest vector problem or the closest vector problem in Euclidean lattices. While these problems are mostly NP-hard, it is still possible to compute good approximations in practice. In this thesis, we study approximation algorithms for these lattice reduction problems, which operate either in proved polynomial time, or more generally in reasonable time. We first analyze the functioning of these algorithms from a theoretical point of view, which allows us to build for example, the best proved algorithm for its complexity and the quality of its results. But we also study the practical aspects, through a lot of simulations, which allows us to highlight an important difference between properties of complexity and quality that we can prove, and those (much better) that can be achieved in practice. These simulations also allow us to correctly predict the actual behavior of lattice reduction algorithms. We study these algorithms first in the general case, and then we show how to make specialized versions for the very particular lattices drawn from NTRU cryptosystem
Andreadis, Ioannis, and Fernand Pelletier. "Contribution à l'étude des singularités en géométrie symplectique et pseudo-riemannienne en dimension infinie." Chambéry, 1995. http://www.theses.fr/1995CHAMS002.
Full textUribe, Vargas Eduardo Ricardo. "Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces." Paris 7, 2001. http://www.theses.fr/2001PA077154.
Full textRacanière, Sébastien. "Cohomologie équivariante des espaces SU(n)2g et de leurs réductions quasi-Hamiltoniennes." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. https://publication-theses.unistra.fr/public/theses_doctorat/2002/RACANIERE_Sebastien_2002.pdf.
Full textA well known fact about reduction in a Hamiltonian space is that its restriction map is surjective. In a quasi-Hamiltonian setting, things are more complicated. In this thesis, we study the case of the space SU(n)2̂g. Its reduction at an element in the center of SU(n) is isomorphic to a moduli space of semi-stable holomorphic vector bundles over a Riemann surface of genus g. Firstly, we study the reduction at a regular value of the moment map, namely a generator of the center of SU(n). We describe its restriction map in terms of natural multiplicative generators of the equivariant cohomology of SU(n)2̂g and of the moduli space's cohomology. Secondly, we look at the reduction at the identity matrix of SU(n). Here the restriction map is injective. After a study of a family of generalised Morse-Bott functions on SU(n)2̂g, we propose a geometric interpretation of the injectivity of the restriction map in the cases n=2 or 3
Farouk, Anas El. "Méthodes de réduction, conservant les structures, pour le calcul des valeurs et vecteurs propres d'une matrice structurée." Littoral, 2006. http://www.theses.fr/2006DUNK0147.
Full textThe first part of this thesis deals with QR-like factorization for the symplectic case. Thus, the symplectic Gram-Schmidt (SGS) algorithm and its modified versions are studied in detail. In particular, the error analysis for the algorithm allowed us to obtain bounds for the error in the SR factorizationand for the loss of orthogonality. We also introduced and studied the symplectic Householder transformations. A Houselder type method for the factorization SR is introduced and studied following an algebraic and geometric approches. Results on the error are obtained. Finally, a link with the modified SGS and the SR factorization via Householder transvections is established. The second part is devoted to the introduction and the study of Krylov-like methods, structure preserving, for the eigenvalue problem. Two Arnoldi's methods are highlighted. One used the SGS in the orthogonalization process while the other performs the factorization via symplectic transvections. Finally, symplectic Lanczos type methods are introduced and studied. Unlike the classical methods, all these methods are structured-preserving for Hamiltonian, skew-Hamiltonian and symplectic matrices. The last chapter is devoted to numerical experiments
Fu, Baohua. "Résolutions symplectiques pour les singularités symplectiques." Nice, 2003. http://www.theses.fr/2003NICE4078.
Full textChhay, Marx. "Intégrateurs géométriques : application à la mécanique des fluides." La Rochelle, 2008. http://www.theses.fr/2008LAROS261.
Full textA recent approach to study the equations from Fluid Mechanics consists in considering the symmetry group of equations. Succes of theoretical development, specially in turbulence, has justified the relevance of this approach. On the numerical side, the integrating methods based on arguments related to the geometrical structure of equations are called geometric integrators. In the first part of this thesis, a class of such integrators is introduced: symplectic integrators for hamiltonian systems, which are probably the most well known geometric integrators. In the second part, variational integrators are outlined, constructed in order to reproduce conservation laws of lagrangian systems. However most of Fluid Mechanics equations cannot be derived from a Lagrangian. In the last part of this thesis, a method of construction of numerical schemes that preserves equations symmetry is exposed. This method is based on a modern formulation of moving frames. A contribution to the development of this method is proposed; this allows to obtain an invariant numerical scheme that owns an order of accuracy. Examples from Fluid Mechanics model equations are detailled
Boutat, Driss. "Feuilletages isodrastiques et phase de Berry-Weinstein pour le mouvement des sous-variétés lagrangiennes : cas des surfaces symplectiques." Lyon 1, 1993. http://www.theses.fr/1993LYO10147.
Full textPillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.
Full textThe purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines
Cazassus, Guillem. "Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30043/document.
Full textSymplectic instanton homology is an invariant for closed oriented three-manifolds, defined by Manolescu and Woodward, which conjecturally corresponds to a symplectic version of a variant of Floer's instanton homology. In this thesis we study the behaviour of this invariant under connected sum, Dehn surgery, and four-dimensional cobordisms. We prove a Künneth-type formula for the connected sum: let Y and Y' be two closed oriented three-manifolds, we show that the symplectic instanton homology of their connected sum is isomorphic to the direct sum of the tensor product of their symplectic instanton homology, and a shift of their torsion product. We define twisted versions of this homology, and then prove an analog of the Floer exact sequence, relating the invariants of a Dehn surgery triad. We use this exact sequence to compute the rank of the groups associated to branched double covers of quasi-alternating links, some plumbings of disc bundles over spheres, and some integral Dehn surgeries along certain knots. We then define invariants for four dimensional cobordisms as maps between the symplectic instanton homology of the two boundaries. We show that among the three morphisms in the surgery exact sequence, two are such maps, associated to the handle-attachment cobordisms. We also give a vanishing criteria for such maps associated to blow-ups
Gadbled, Agnès. "Sous-variétés lagrangiennes monotones." Phd thesis, Université Louis Pasteur - Strasbourg I, 2008. http://tel.archives-ouvertes.fr/tel-00286624.
Full textDans cette thèse, nous exploitons les hypothèses de monotonie en théorie de Floer sous deux aspects. Un premier aspect est l'étude d'une nouvelle famille d'exemples de variétés symplectiques monotones et de leurs sous-variétés lagrangiennes monotones. Cette famille d'exemples est construite par découpe symplectique à partir du cotangent de variétés munies d'une action libre du cercle. Un second aspect est la construction d'une homologie de type Floer-Novikov pour des sous-variétés lagrangiennes d'un cotangent qui sont dites monotones sur les lacets. On en déduit de nouveaux résultats d'obstruction de plongements lagrangiens monotones sur les lacets dans le cotangent de variétés qui fibrent sur le cercle.
Liu, Gang. "Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel." Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/dab97901-6f8a-472a-8233-561a354976b7.
Full textIn this thesis we decompose in irreducibles the restriction of a discrete series representation of SU(2,1) to a maximal exponential solvable or a Borel subgroup and we interpret our results in the framework of the orbit method, hamiltonian geometry and "Spinc" quantization. In particular, we check that admissibility, which means that the restriction decomposes discretely in irreducibles, each one appearing with finite multiplicity, is equivalent to the compacity of the reduced spaces and we show that the multiplicities are related to the quantization of the reduced spaces
Leicht, Karl. "Structures kählériennes sur T*G dont la forme symplectique sous-jacente est la forme standard." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10111.
Full textLet G be a connected Lie group. We show that every complex structure on the total space TG of the tangent bundle of G which is left invariant and such that an orbit with respect to the left translation action is totally real, is induced by a smooth immersion of TG into the complexifixed group of G. For G compact and connected, we also characterize the right invariant complex structures and the biinvariant complex structures on the total space T*G of the cotangent bundle of G which, combined with the tautological symplectic structure, endow T*G with a Kaehler structure. Finally, we study the Ricci curvature of these Kaehler structures
Pardo, Soares Ronan. "Jeux de poursuite-évasion, décompositions et convexité dans les graphes." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00908227.
Full textBen, Yahia Hamed. "Intégralité classique et quantique de quelques systèmes dynamiques." Paris 7, 2008. http://www.theses.fr/2008PA077048.
Full textThis thesis is devoted to the study of the integrability of some dynamical Systems. In a first job, we've got a new family (enumerable) of integrable Systems on the sphere S ^2 wich genralizes the Neumann System. In a second job, on metrics called muticenter with integrable géodésie flow, we've show that they do belong to the Bianchi A metrics. Among them, those for Bianchi Vl_0 and Vll_0 seemed to be non-diagonal, but we've prove that in those two cases, apropriates coordinates changes allow to diagonalize them. Finally, for the Bianchi II metric we have highlighted the existence, in classical level, of a new W-algebra for conserved observables. Those two works, have been published in journals, but we've include in the thesis, two other works for which we have not obtain general solutions and that will lead to publications. -Construction of multi-center metrics in the Bianchi B classes. -Construction, in dimension 2, of all Stäckel Systems that do have an extra conserved quadratic quatity. In the first case we have been able to solve the problem for Bianchi B III, and for the second we have only been able to get particular solutions
Calaque, Damien. "Formality theorems for Lie algebroids and quantization of dynamical r-matrices." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/CALAQUE_Damien_2005.pdf.
Full textBalleier, Carsten. "Geometry and quantization of Howe pairs of symplectic actions." Thesis, Metz, 2009. http://www.theses.fr/2009METZ016S/document.
Full textMotivated by the representation-theoretic notion of Howe duality, we seek an analogous construction in symplectic geometry in the sense that its geometric quantization decomposes in a Howe dual fashion. We find that in the symplectic context, the correct setting is given by two Lie groups acting on a symplectic manifold when these two actions commute and satisfy the symplectic Howe ondition, i. e., these actions are Hamiltonian and their collective functions are their mutual centralizers in the Poisson algebra of smooth functions on the symplectic manifold. Once this condition is satisfied, we can describe the orbit structure in detail. In particular, there is a bijection between the coadjoint orbits in one moment image and those in the other moment image – this bijection is what we call the coadjoint orbit correspondence. We study the coadjoint orbit correspondence further and show, if the acting Lie groups are compact and the symplectic manifold is prequantizable, that it preserves integrality of the coadjoint orbits, so to both coadjoint orbits in the correspondence an irreducible representation can be associated. We thus have a bijection between certain parts of the unitary duals of both Lie groups acting on the symplectic manifold. Applying known results about the interchangeability of quantization and reduction, we see that for a Kähler manifold, its quantization (as a representation of the product of both groups acting on the manifold) decomposes into a multiplicity-free direct sum of tensor products of irreducibles of the individual groups, the pairs being given by the bijection obtained before – as one would expect according to Howe duality. This main result is accompanied by a study of the local structure of a manifold carrying two commuting Hamiltonian action which proves a local version of the orbit correspondence and by a discussion about the relation of the coadjoint orbit correspondence to the generalized symplectic leaf correspondence in singular dual pairs
Janaqi, Stefan. "Quelques éléments de la géométrie des graphes : graphes médians, produits d'arbres, génération convexe des graphes de Polymino." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1995GRE10093.
Full textZenaidi, Naim. "Théorèmes de Künneth en homologie de contact." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209005.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Lu, Zhi-Cheng. "Représentations de groupes quantiques sur l'espace de phase." Dijon, 1992. http://www.theses.fr/1992DIJOS032.
Full textMeyer, Julien. "Quantisation of the Laplacian and a Curved Version of Geometric Quantisation." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/235181.
Full textOption Mathématique du Doctorat en Sciences
info:eu-repo/semantics/nonPublished
DANIILIDIS, Aris. "Analyse convexe et quasi-convexe ; applications en optimisation." Habilitation à diriger des recherches, Université de Pau et des Pays de l'Adour, 2002. http://tel.archives-ouvertes.fr/tel-00001355.
Full textHoluigue, Jerôme. "Modélisation des transferts thermiques et solutaux en géométrie cylindrique tridimensionnelle au cours d'une croissance cristalline : effet de la convexité d'une interface fluide/solide sur la structure de l'écoulement." Bordeaux 1, 1995. http://www.theses.fr/1995BOR10645.
Full textMerckx, Keno. "Optimization and Realizability Problems for Convex Geometries." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/288673/4/TOC.pdf.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Le, Crapper Jérôme. "Critères pour qu'une géodésique de la métrique de Hofer soit minimale." Paris 6, 2004. http://www.theses.fr/2004PA066467.
Full textPeiffer-Smadja, Amiel. "Homologies lagrangiennes, symplectiques et attachement d'anse." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS370.
Full textIn this PhD thesis, I present a new construction of the wrapped Fukaya complex of a Lagrangian and of the Chekanov algebra of a Legendrian using techniques developed by Cieliebak, Ekholm and Oancea. These constructions behave well under cobordisms and thus are fit to study the symplectic handle attachment procedure. I prove that the wrapped Fukaya complex of the cocore is isomorphic to the Chekanov algebra of the attachment sphere and show that this isomorphism factors through Abouzaid’s Open-Closed map. I then give a strategy in order to deduce from these results two important theorems announced by Bourgeois, Ekholm and Eliashberg concerning the behaviour of symplectic homology under handle attachment and the generation of the Fukaya category. In the last chapter, I define following an idea of A’Campo a geodesic flow on the skeleton of a Brieskorn manifold and relate this flow to the Reeb flow on the link of the singularity in order to try to generalize Viterbo’s isomorphism between the symplectic homology of a cotangent bundle and the homology of a loop space
Cadet, Frédéric. "Déformation et quantification par groupoïde des variétés toriques." Phd thesis, Université d'Orléans, 2001. http://tel.archives-ouvertes.fr/tel-00001848.
Full textMenet, Grégoire. "Cohomologie entière et fibrations lagrangiennes sur certaines variétés holomorphiquement symplectiques singulières." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10050/document.
Full textThe starting point of the thesis was the study of a singular irreducible holomorphically symplectic variety (IHSV) of dimension 4 with orbifold singularities which was constructed by Markushevich—Tikhomirov in 2007 as a compactification of a Lagrangian family of (1,2)-polarized Prym surfaces. This family of Prym surfaces is associated to a linear system of genus-3 curves on a quartic K3 surface endowed with an anti-symplectic involution. In the fist part of the thesis, the Beauville—Bogomolov form (BB) on the second integer cohomology group of this IHSV is computed. The existence of the BB form for an IHSV with singular locus of codimension 4 was proved by Namikawa, but no explicit example of such a form was known. The thesis provides the first concrete examples of BB forms on singular IHSV. The calculation of these BB forms required the development of some tools for computing the integer cohomology of varieties quotiented by automorphism groups of prime order. In the second part of the thesis, the mirror family of dual abelian surfaces for the Markushevich—Tikhomirov IHSV is determined. As it turns out, it is also a family of Prym surfaces associated to a quartic K3 surface with an anti-symplectic involution and hence admits a compactification, which is the mirror of the original IHSV. A very precise geometric description of this duality is given, using Pantazis's bigonal construction. Moreover, it is proved that the mirror symmetry constructed in this way represents a non-trivial birational involution on the moduli space of Markushevich—Tikhomirov IHSV
Camere, Chiara. "Stabilité des images inverses des fibrés tangents et involutions des variétés symplectiques." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00552994.
Full textLa, Fuente Gravy Laurent. "Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209411.
Full textde la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines
connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.
Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété
symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes
hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous
identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe
des automorphismes du produit star. Nous relions certaines propriétés géométriques de
ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes
hamiltoniens.
Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients
nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs
symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en
quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits
de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock
lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions
les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.
Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous
prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.
/
In this thesis we study two topics of symplectic geometry inspired from mathematical physics.
Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel
of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms.
Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space
$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Castan, Thibaut. "Stability in the plane planetary three-body problem." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066062/document.
Full textArnold showed the existence of quasi-periodic solutions in the plane planetary three-body prob- lem, provided that the mass of two of the bodies, the planets, is small compared to the mass of the third one, the Sun. This smallness condition depends in a sensitive way on the analyticity widths of the Hamiltonian of the three-body problem, expressed with the help of some tran- scendental coordinates. Hénon gave a minimal ratio of masses necessary to the application of Arnold’s theorem. The main objective of this thesis is to determine a sufficient condition on this ratio. A first part of this work consists in estimating these analyticity widths, which requires a precise study of the complex Kepler equation, as well as the complex singularities of the disturb- ing function. A second part consists in reworking the Hamiltonian to put it under normal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-Arnold-Moser). In this aim, it is essential to work with the secular Hamiltonian to put it under a suitable normal form. We can then quantify the non-degeneracy of the secular Hamiltonian, as well as estimate the perturbation. Finally, it is necessary to derive a quantitative version of the KAM theorem, in order to identify the hypotheses necessary for its application to the plane three-body problem. After this work, it is shown that the KAM theorem can be applied for a ratio of masses that is close to 10^(−85) between the planets and the star
Albouy, Olivier. "Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l'information quantique." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00402290.
Full textPuis nous étudions de façon systématique la possibilité de construire de telles bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur (Z_d)^m montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de (Z_d)^2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Z_d)^2),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.
Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
Papadopoulos, Athanase. "Trois études sur les feuilletages mesurés." Paris 11, 1989. http://www.theses.fr/1989PA112187.
Full text