Academic literature on the topic 'Convolutional Deep Belief Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convolutional Deep Belief Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Convolutional Deep Belief Networks"
Chu, Joseph Lin, and Adam Krzyźak. "The Recognition Of Partially Occluded Objects with Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks." Journal of Artificial Intelligence and Soft Computing Research 4, no. 1 (January 1, 2014): 5–19. http://dx.doi.org/10.2478/jaiscr-2014-0021.
Full textGuang Huo, Qi Zhang, Yangrui Zhang, Yuanning Liu, Huan Guo, and Wenyu Li. "Multi-Source Heterogeneous Iris Recognition Using Stacked Convolutional Deep Belief Networks-Deep Belief Network Model." Pattern Recognition and Image Analysis 31, no. 1 (January 2021): 81–90. http://dx.doi.org/10.1134/s1054661821010119.
Full textLi, Yang, and Chu Li. "Singer Recognition Based on Convolutional Deep Belief Networks." IOP Conference Series: Materials Science and Engineering 435 (November 5, 2018): 012005. http://dx.doi.org/10.1088/1757-899x/435/1/012005.
Full textPhan, NhatHai, Xintao Wu, and Dejing Dou. "Preserving differential privacy in convolutional deep belief networks." Machine Learning 106, no. 9-10 (July 13, 2017): 1681–704. http://dx.doi.org/10.1007/s10994-017-5656-2.
Full textTang, Binbin, Xiao Liu, Jie Lei, Mingli Song, Dapeng Tao, Shuifa Sun, and Fangmin Dong. "DeepChart: Combining deep convolutional networks and deep belief networks in chart classification." Signal Processing 124 (July 2016): 156–61. http://dx.doi.org/10.1016/j.sigpro.2015.09.027.
Full textRakhmanenko, I. A., A. A. Shelupanov, and E. Y. Kostyuchenko. "Automatic text-independent speaker verification using convolutional deep belief network." Computer Optics 44, no. 4 (August 2020): 596–605. http://dx.doi.org/10.18287/2412-6179-co-621.
Full textWang, Haibo, and Xiaojun Bi. "Contractive Slab and Spike Convolutional Deep Belief Network." Neural Processing Letters 49, no. 3 (August 9, 2018): 1697–722. http://dx.doi.org/10.1007/s11063-018-9897-2.
Full textNizami Huseyn, Elcin. "APPLICATION OF DEEP LEARNING TECHNOLOGY IN DISEASE DIAGNOSIS." NATURE AND SCIENCE 04, no. 05 (December 28, 2020): 4–11. http://dx.doi.org/10.36719/2707-1146/05/4-11.
Full textBrosch, Tom, and Roger Tam. "Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-Resolution 2D and 3D Images." Neural Computation 27, no. 1 (January 2015): 211–27. http://dx.doi.org/10.1162/neco_a_00682.
Full textKumar, P. S. Jagadeesh, Yanmin Yuan, Yang Yung, Mingmin Pan, and Wenli Hu. "Robotic simulation of human brain using convolutional deep belief networks." International Journal of Intelligent Machines and Robotics 1, no. 2 (2018): 180. http://dx.doi.org/10.1504/ijimr.2018.094922.
Full textDissertations / Theses on the topic "Convolutional Deep Belief Networks"
Liu, Ye. "Application of Convolutional Deep Belief Networks to Domain Adaptation." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397728737.
Full textNassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Full textHigher Committee for Education Development in Iraq
Mancevo, del Castillo Ayala Diego. "Compressing Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217316.
Full textFaulkner, Ryan. "Dyna learning with deep belief networks." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97177.
Full textL'objectif de l'apprentissage par renforcement est de choisir de bonnes actions dansun environnement où les informations sont fournies par une récompense numérique, etl'état actuel (données sensorielles) est supposé être disponible à chaque pas de temps. Lanotion de "correct" est définie comme étant la maximisation des rendements attendus cumulatifsdans le temps. Il est parfois utile de construire des modèles de l'environnementpour aider à résoudre le problème. Nous étudions l'apprentissage par renforcement destyleDyna, une approche performante dans les situations où les données réelles disponiblesne sont pas nombreuses. L'idée principale est de compléter les trajectoires réelles aveccelles simulées échantillonnées partir d'un modèle appri de l'environnement. Toutefois,dans les domaines à plusieurs états, le problème de l'apprentissage d'un bon modèlegénératif de l'environnement est jusqu'à présent resté ouvert. Nous proposons d'utiliserles réseaux profonds de croyance pour apprendre un modèle de l'environnement. Lesréseaux de croyance profonds (Hinton, 2006) sont des modèles génératifs qui sont efficaces pourl'apprentissage des relations de dépendance temporelle parmi des données complexes. Ila été démontré que de tels modèles peuvent être appris dans un laps de temps raisonnablequand ils sont construits en utilisant des modèles de l'énergie. Nous présentons notre algorithmepour l'utilisation des réseaux de croyance profonds en tant que modèle génératifpour simuler l'environnement dans l'architecture Dyna, ainsi que des résultats empiriquesprometteurs.
Avramova, Vanya. "Curriculum Learning with Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178453.
Full textAyoub, Issa. "Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39337.
Full textHärenstam-Nielsen, Linus. "Deep Convolutional Networks with Recurrence for Eye-Tracking." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240608.
Full textDenna uppsats utforskar användandet av minnesceller i faltningsbaserade neuralnätverk för ögonföljning. Vi undersöker specifikt inverkan av att byta ut faltningslager med faltningsbaserade LSTMer och att byta ut de fullt sammankopplade feature-lagren med vanliga RNNer och LSTMer. Vi beskriver hur man bör gå från en statisk modell som tar en bild i taget som input till en tidsberoende modell som tar flera bilder som input. Vi understryker även fördelar och nackdelar med en sådan övergång. Vi visar att LSTM-celler i faltningslagren och RNNceller i featurelagren kan förbättra eye-trackingprestandan, men ävenatt LSTM-celler i featurelagren kan försämra prestandan.
Larsson, Susanna. "Monocular Depth Estimation Using Deep Convolutional Neural Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159981.
Full textImbulgoda, Liyangahawatte Gihan Janith Mendis. "Hardware Implementation and Applications of Deep Belief Networks." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1476707730643462.
Full textCaron, Mathilde. "Unsupervised Representation Learning with Clustering in Deep Convolutional Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227926.
Full textDetta examensarbete behandlar problemet med oövervakat lärande av visuella representationer med djupa konvolutionella neurala nätverk (CNN). Detta är en av de viktigaste faktiska utmaningarna i datorseende för att överbrygga klyftan mellan oövervakad och övervakad representationstjänst. Vi föreslår ett nytt och enkelt sätt att träna CNN på helt omärkta dataset. Vår metod består i att tillsammans optimera en gruppering av representationerna och träna ett CNN med hjälp av grupperna som tillsyn. Vi utvärderar modellerna som tränats med vår metod på standardöverföringslärande experiment från litteraturen. Vi finner att vår metod överträffar alla självövervakade och oövervakade, toppmoderna tillvägagångssätt, hur sofistikerade de än är. Ännu viktigare är att vår metod överträffar de metoderna även när den oövervakade träningsuppsättningen inte är ImageNet men en godtycklig delmängd av bilder från Flickr.
Books on the topic "Convolutional Deep Belief Networks"
Lu, Le, Yefeng Zheng, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Image Computing. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42999-1.
Full textLu, Le, Xiaosong Wang, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13969-8.
Full textMichelucci, Umberto. Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection. Apress, 2019.
Find full textMasters, Timothy. Deep Belief Nets in C++ and CUDA C: Volume 3: Convolutional Nets. Apress, 2018.
Find full textPractical Convolutional Neural Networks: Implement advanced deep learning models using Python. Packt Publishing - ebooks Account, 2018.
Find full textWang, Xiaosong, Lin Yang, Le Lu, and Gustavo Carneiro. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Springer, 2019.
Find full textDeep belief nets in C++ and CUDA C. CreateSpace Independent Publishing Platform, 2015.
Find full textYang, Lin, Le Lu, Yefeng Zheng, and Gustavo Carneiro. Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets. Springer, 2018.
Find full textYang, Lin, Le Lu, Yefeng Zheng, and Gustavo Carneiro. Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets. Springer, 2017.
Find full textMasters, Timothy. Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks. Apress, 2018.
Find full textBook chapters on the topic "Convolutional Deep Belief Networks"
Kaiser, Jacques, David Zimmerer, J. Camilo Vasquez Tieck, Stefan Ulbrich, Arne Roennau, and Rüdiger Dillmann. "Spiking Convolutional Deep Belief Networks." In Artificial Neural Networks and Machine Learning – ICANN 2017, 3–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68612-7_1.
Full textHu, Dan, Xingshe Zhou, and Junjie Wu. "Visual Tracking Based on Convolutional Deep Belief Network." In Lecture Notes in Computer Science, 103–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23216-4_8.
Full textWicht, Baptiste, Andreas Fischer, and Jean Hennebert. "Keyword Spotting with Convolutional Deep Belief Networks and Dynamic Time Warping." In Artificial Neural Networks and Machine Learning – ICANN 2016, 113–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44781-0_14.
Full textGuo, Lei, Shijie Li, Xin Niu, and Yong Dou. "A Study on Layer Connection Strategies in Stacked Convolutional Deep Belief Networks." In Communications in Computer and Information Science, 81–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45646-0_9.
Full textChu, Joseph Lin, and Adam Krzyżak. "Application of Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks to Recognition of Partially Occluded Objects." In Artificial Intelligence and Soft Computing, 34–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07173-2_4.
Full textCalin, Ovidiu. "Convolutional Networks." In Deep Learning Architectures, 517–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3_16.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Deep Belief Networks." In Encyclopedia of Machine Learning, 269. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_209.
Full textBanerjee, Tathagat, Dhruv Batta, Aditya Jain, S. Karthikeyan, Himanshu Mehndiratta, and K. Hari Kishan. "Deep Belief Convolutional Neural Network with Artificial Image Creation by GANs Based Diagnosis of Pneumonia in Radiological Samples of the Pectoralis Major." In Lecture Notes in Electrical Engineering, 979–1002. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0749-3_75.
Full textKetkar, Nikhil. "Convolutional Neural Networks." In Deep Learning with Python, 63–78. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2766-4_5.
Full textSalvaris, Mathew, Danielle Dean, and Wee Hyong Tok. "Convolutional Neural Networks." In Deep Learning with Azure, 131–60. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3679-6_6.
Full textConference papers on the topic "Convolutional Deep Belief Networks"
Liu, Xiao, Binbin Tang, Zhenyang Wang, Xianghua Xu, Shiliang Pu, Dapeng Tao, and Mingli Song. "Chart classification by combining deep convolutional networks and deep belief networks." In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2015. http://dx.doi.org/10.1109/icdar.2015.7333872.
Full textRen, Yuanfang, and Yan Wu. "Convolutional deep belief networks for feature extraction of EEG signal." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889383.
Full textZhao, Weichen, and Junshe An. "Wireless Signal Fngerprint Extraction Based on Convolutional Deep Belief Network." In 2021 13th International Conference on Communication Software and Networks (ICCSN). IEEE, 2021. http://dx.doi.org/10.1109/iccsn52437.2021.9463643.
Full textWu, Huiyi, John Soraghan, Anja Lowit, and Gaetano Di-Caterina. "A Deep Learning Method for Pathological Voice Detection Using Convolutional Deep Belief Networks." In Interspeech 2018. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/interspeech.2018-1351.
Full textLee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations." In the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553453.
Full textHuang, G. B., Honglak Lee, and E. Learned-Miller. "Learning hierarchical representations for face verification with convolutional deep belief networks." In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247968.
Full textChaturvedi, Iti, Erik Cambria, Soujanya Poria, and Rajiv Bajpai. "Bayesian Deep Convolution Belief Networks for Subjectivity Detection." In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016. http://dx.doi.org/10.1109/icdmw.2016.0134.
Full textJin, Xinyu, Chunhui Ma, Yuchen Zhang, and Lanjuan Li. "Classification of Lung Nodules Based on Convolutional Deep Belief Network." In 2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2017. http://dx.doi.org/10.1109/iscid.2017.57.
Full textWang, Dandan, Ming Li, and Xiaoxu Li. "Face Detection Algorithm Based on Convolutional Pooling Deep Belief Network." In 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/eame-17.2017.64.
Full textTanase, Radu, Mihai Datcu, and Dan Raducanu. "A convolutional deep belief network for polarimetric SAR data feature extraction." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730968.
Full text