Dissertations / Theses on the topic 'Convolutional Deep Belief Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Convolutional Deep Belief Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, Ye. "Application of Convolutional Deep Belief Networks to Domain Adaptation." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397728737.
Full textNassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Full textHigher Committee for Education Development in Iraq
Mancevo, del Castillo Ayala Diego. "Compressing Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217316.
Full textFaulkner, Ryan. "Dyna learning with deep belief networks." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97177.
Full textL'objectif de l'apprentissage par renforcement est de choisir de bonnes actions dansun environnement où les informations sont fournies par une récompense numérique, etl'état actuel (données sensorielles) est supposé être disponible à chaque pas de temps. Lanotion de "correct" est définie comme étant la maximisation des rendements attendus cumulatifsdans le temps. Il est parfois utile de construire des modèles de l'environnementpour aider à résoudre le problème. Nous étudions l'apprentissage par renforcement destyleDyna, une approche performante dans les situations où les données réelles disponiblesne sont pas nombreuses. L'idée principale est de compléter les trajectoires réelles aveccelles simulées échantillonnées partir d'un modèle appri de l'environnement. Toutefois,dans les domaines à plusieurs états, le problème de l'apprentissage d'un bon modèlegénératif de l'environnement est jusqu'à présent resté ouvert. Nous proposons d'utiliserles réseaux profonds de croyance pour apprendre un modèle de l'environnement. Lesréseaux de croyance profonds (Hinton, 2006) sont des modèles génératifs qui sont efficaces pourl'apprentissage des relations de dépendance temporelle parmi des données complexes. Ila été démontré que de tels modèles peuvent être appris dans un laps de temps raisonnablequand ils sont construits en utilisant des modèles de l'énergie. Nous présentons notre algorithmepour l'utilisation des réseaux de croyance profonds en tant que modèle génératifpour simuler l'environnement dans l'architecture Dyna, ainsi que des résultats empiriquesprometteurs.
Avramova, Vanya. "Curriculum Learning with Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178453.
Full textAyoub, Issa. "Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39337.
Full textHärenstam-Nielsen, Linus. "Deep Convolutional Networks with Recurrence for Eye-Tracking." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240608.
Full textDenna uppsats utforskar användandet av minnesceller i faltningsbaserade neuralnätverk för ögonföljning. Vi undersöker specifikt inverkan av att byta ut faltningslager med faltningsbaserade LSTMer och att byta ut de fullt sammankopplade feature-lagren med vanliga RNNer och LSTMer. Vi beskriver hur man bör gå från en statisk modell som tar en bild i taget som input till en tidsberoende modell som tar flera bilder som input. Vi understryker även fördelar och nackdelar med en sådan övergång. Vi visar att LSTM-celler i faltningslagren och RNNceller i featurelagren kan förbättra eye-trackingprestandan, men ävenatt LSTM-celler i featurelagren kan försämra prestandan.
Larsson, Susanna. "Monocular Depth Estimation Using Deep Convolutional Neural Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159981.
Full textImbulgoda, Liyangahawatte Gihan Janith Mendis. "Hardware Implementation and Applications of Deep Belief Networks." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1476707730643462.
Full textCaron, Mathilde. "Unsupervised Representation Learning with Clustering in Deep Convolutional Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227926.
Full textDetta examensarbete behandlar problemet med oövervakat lärande av visuella representationer med djupa konvolutionella neurala nätverk (CNN). Detta är en av de viktigaste faktiska utmaningarna i datorseende för att överbrygga klyftan mellan oövervakad och övervakad representationstjänst. Vi föreslår ett nytt och enkelt sätt att träna CNN på helt omärkta dataset. Vår metod består i att tillsammans optimera en gruppering av representationerna och träna ett CNN med hjälp av grupperna som tillsyn. Vi utvärderar modellerna som tränats med vår metod på standardöverföringslärande experiment från litteraturen. Vi finner att vår metod överträffar alla självövervakade och oövervakade, toppmoderna tillvägagångssätt, hur sofistikerade de än är. Ännu viktigare är att vår metod överträffar de metoderna även när den oövervakade träningsuppsättningen inte är ImageNet men en godtycklig delmängd av bilder från Flickr.
Jonnarth, Arvi. "Camera-Based Friction Estimation with Deep Convolutional Neural Networks." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355618.
Full textUnder de senaste åren har det gjorts stora framsteg inom maskininlärning, särskilt gällande neurala nätverk. Djupa neurala närverk med faltningslager, eller faltningsnätverk (eng. convolutional neural network) har framför allt varit framgångsrika inom bildbehandling i problem så som bildklassificering och objektdetektering. Biltillverkare, bland andra aktörer, har nu börjat att inse potentialen av maskininlärning och påbörjat dess tillämpning inom autonom körning. Detta är ingen enkel uppgift och många utmaningar finns fortfarande framöver. Ett delproblem som måste lösas är ett sätt att automatiskt avgöra väglaget, där friktionen ingår. Eftersom många nya bilar är utrustade med kameror är det naturligt att försöka tackla detta problem med faltningsnätverk, vilket är varför detta har gjorts under detta examensarbete. Först samlar vi in en datamängd beståendes av 37 000 bilder tagna på vägar genom framrutan av en bil. Dessa bilder kategoriseras efter friktionen på vägen. Sedan tränar vi faltningsnätverk på denna datamängd för att klassificera friktionen. Att samla in vägbilder och att kategorisera dessa är en tidskrävande och svår process och kräver mänsklig övervakning. Av denna anledning utförs experiment på en andra datamängd beståendes av 54 000 simulerade bilder. Dessa har blivit insamlade genom spelet World Rally Championship 7 där syftet är att undersöka om prestandan på nätverken kan ökas genom simulerat data och därmed minska kravet på storleken av den riktiga datamängden. De experiment som har utförts under examensarbetet visar på att faltningsnätverk är ett bra tillvägagångssätt för att skatta vägfriktionen. Den begränsande faktorn i det här fallet är datamängden. Datamängden behöver inte bara vara större, men den måste framför allt täcka in ett bredare urval av väglag och väderförhållanden. Friktion är en komplex egenskap och beror på många variabler, och faltningsnätverk är endast effektiva på den typen av data som de har tränats på. Av dessa anledningar behöver ny data samlas in genom att aktivt söka efter nya körförhållanden om detta tillvägagångssätt ska vara tillämpbart i praktiken.
Uličný, Matej. "Methods for Increasing Robustness of Deep Convolutional Neural Networks." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-29734.
Full textOyallon, Edouard. "Analyzing and introducing structures in deep convolutional neural networks." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE060.
Full textThis thesis studies empirical properties of deep convolutional neural networks, and in particular the Scattering Transform. Indeed, the theoretical analysis of the latter is hard and until now remains a challenge: successive layers of neurons have the ability to produce complex computations, whose nature is still unknown, thanks to learning algorithms whose convergence guarantees are not well understood. However, those neural networks are outstanding tools to tackle a wide variety of difficult tasks, like image classification or more formally statistical prediction. The Scattering Transform is a non-linear mathematical operator whose properties are inspired by convolutional networks. In this work, we apply it to natural images, and obtain competitive accuracies with unsupervised architectures. Cascading a supervised neural networks after the Scattering permits to compete on ImageNet2012, which is the largest dataset of labeled images available. An efficient GPU implementation is provided. Then, this thesis focuses on the properties of layers of neurons at various depths. We show that a progressive dimensionality reduction occurs and we study the numerical properties of the supervised classification when we vary the hyper parameters of the network. Finally, we introduce a new class of convolutional networks, whose linear operators are structured by the symmetry groups of the classification task
Sångberg, Dennis. "Automated Glioma Segmentation in MRI using Deep Convolutional Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171046.
Full textManuell segmentering av hjärntumörer är en tidskrävande process, segmenteringarna är ofta varierade mellan experter, och automatisk segmentering skulle vara användbart för kliniskt bruk. Den här rapporten undersöker användningen av deep convolutional networks (ConvNets) för automatisk segmentering av gliom i MR-bilder. De implementerade nätverken utvärderas med hjälp av data från brain tumor segmentation challenge (BraTS). Studien finner att 3D-nätverk har generellt bättre resultat än 2D-nätverk, och att de bästa nätverken har förmågan att ge segmenteringar som liknar mänskliga segmenteringar. ConvNets utvärderas också som feature extractors, med linjära SVM som klassificerare. Den här metoden ger segmenteringar med hög känslighet, men är också till hög grad översegmenterade. Vikten av att ha mer träningsdata undersöks också genom att träna på två olika stora dataset, men metoden för att få fram de riktiga segmenteringarna har troligen också stor påverkan på resultatet. Nätverken slår inte de tidigare rekorden på BraTS, men flera viktiga men enkla förbättringsområden är identifierade som potentiellt skulle förbättra resultaten.
Mattsson, Niklas. "Classification Performance of Convolutional Neural Networks." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305342.
Full textJulin, Fredrik. "Vision based facial emotion detection using deep convolutional neural networks." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42622.
Full textJangblad, Markus. "Object Detection in Infrared Images using Deep Convolutional Neural Networks." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355221.
Full textInkiläinen, V. (Valtteri). "Clustering image sets with features from deep convolutional neural networks." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201910313044.
Full textSchilling, Fabian. "The Effect of Batch Normalization on Deep Convolutional Neural Networks." Thesis, KTH, Centrum för Autonoma System, CAS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222.
Full textBatch normalization är en metod för att påskynda träning av djupa framåtmatande neuronnnätv som nyligt blivit populär. Förutom hastighetsförbättringar så tillåter metoden enligt uppgift högre träningshastigheter, mindre noggrann parameterinitiering och mättande olinjäriteter. Författarna noterar att den exakta effekten av batch normalization på neuronnät fortfarande är ett område som kräver ytterligare studier, särskilt när det gäller deras gradient-fortplantning. Vårt arbete jämför konvergensbeteende mellan nätverk med och utan batch normalization. Vi träner både en liten flerlagersperceptron och ett djupt faltningsneuronnät på fyra populära bilddatamängder. Genom att systematiskt ändra kritiska hyperparametrar isolerar vi effekterna från batch normalization både i allmänhet och med avseende på dessa hyperparametrar. Våra experiment visar att batch normalization har positiva effekter på många aspekter av neuronnät, men vi kan inte bekräfta att det ger betydelsefullt snabbare konvergens, speciellt när väggtiden beaktas. Allmänt så uppnår modeller med batch normalization högre validerings- och testträffsäkerhet på alla datamängder, vilket vi tillskriver till dess reglerande effekt och mer stabil gradientfortplantning. På grund av dessa resultat är användningen av batch normalization generellt rekommenderat eftersom det förhindrar modelldivergens och kan öka konvergenshastigheter genom högre träningshastigheter. Trots dessa egenskaper rekommenderar vi fortfarande användning av varians-bevarande viktinitiering samt likriktare istället för mättande olinjäriteter.
Losch, Max. "Detection and Segmentation of Brain Metastases with Deep Convolutional Networks." Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173519.
Full textZhewei, Wang. "Fully Convolutional Networks (FCNs) for Medical Image Segmentation." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1605199701509179.
Full textAndriolo, Stefano. "Convolutional Neural Networks in Tomographic Image Enhancement." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22843/.
Full textEmmot, Sebastian. "Characterizing Video Compression Using Convolutional Neural Networks." Thesis, Luleå tekniska universitet, Datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79430.
Full textReiche, Myrgård Martin. "Acceleration of deep convolutional neural networks on multiprocessor system-on-chip." Thesis, Uppsala universitet, Avdelningen för datorteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385904.
Full textWieslander, Håkan, and Gustav Forslid. "Deep Convolutional Neural Networks For Detecting Cellular Changes Due To Malignancy." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326160.
Full textLeuchowius, Karl-Johan. "Classification of High Content Screening Data by Deep Convolutional Neural Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334362.
Full textGnacek, Matthew. "Convolutional Neural Networks for Enhanced Compression Techniques." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620139118743853.
Full textHoumadi, Sherri F. "THE APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS TO CLASSIFY PAINT DEFECTS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1807.
Full textNeri, Mattia. "Segmentazione di immagini mammografiche con convolutional neural networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6681/.
Full textBattilana, Pietro. "Convolutional Neural Networks for Image Style Transfer." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16770/.
Full textGerard, Alex Michael. "Iterative cerebellar segmentation using convolutional neural networks." Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6579.
Full textBosello, Michael. "Integrating BDI and Reinforcement Learning: the Case Study of Autonomous Driving." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21467/.
Full textSchennings, Jacob. "Deep Convolutional Neural Networks for Real-Time Single Frame Monocular Depth Estimation." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336923.
Full textBuratti, Luca. "Visualisation of Convolutional Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textSong, Weilian. "Image-Based Roadway Assessment Using Convolutional Neural Networks." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/78.
Full textFong, Vivian Lin. "Software Requirements Classification Using Word Embeddings and Convolutional Neural Networks." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1851.
Full textBearzotti, Riccardo. "Structural damage detection using deep learning networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textPons, Puig Jordi. "Deep neural networks for music and audio tagging." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668036.
Full textL’etiquetatge automàtic d’àudio i de música pot augmentar les possibilitats de reutilització de moltes de les bases de dades d’àudio que romanen pràcticament sense etiquetar. En aquesta tesi, abordem la tasca de l’etiquetatge automàtic d’àudio i de música des de la perspectiva de l’aprenentatge profund i, en aquest context, abordem les següents qüestions cientı́fiques: (i) Quines arquitectures d’aprenentatge profund són les més adients per a senyals d’àudio (musicals)? (ii) En quins escenaris és viable que els models d’aprenentatge profund processin directament formes d’ona? (iii) Quantes dades es necessiten per dur a terme estudis d’investigació en aprenentatge profund? Per tal de respondre a la primera pregunta (i), proposem utilitzar xarxes neuronals convolucionals motivades musicalment i avaluem diverses arquitectures d’aprenentatge profund per a àudio a un baix cost computacional. Al llarg de les nostres investigacions, trobem que els coneixements previs que tenim sobre la música i l’àudio ens poden ajudar a millorar l’eficiència, la interpretabilitat i el rendiment dels models d’aprenentatge basats en espectrogrames. Per a les preguntes (ii – iii) estudiem com el SampleCNN, un model d’aprenentatge profund que processa formes d’ona, funciona quan disposem de quantitats variables de dades d’entrenament — des de 25k cançons fins a 1’2M cançons. En aquest estudi, comparem el SampleCNN amb una arquitectura basada en espectrogrames que està motivada musicalment. Els resultats experimentals que obtenim indiquen que, en escenaris on disposem de suficients dades, els models d’aprenentatge profund que processen formes d’ona (com el SampleCNN) poden aconseguir millors resultats que els que processen espectrogrames. Finalment, per tal d’intentar respondre a la pregunta (iii), també investiguem si una regularització severa de l’espai de solucions, les xarxes prototipades, l’aprenentatge per transferència de coneixement, o la seva combinació, poden permetre als models d’aprenentatge profund obtenir més bons resultats en escenaris on no hi ha gaires dades d’entrenament. Els resultats dels nostres experiments indiquen que l’aprenentatge per transferència de coneixement i les xarxes prototipades són estratègies útils quan les dades d’entrenament no són abundants.
de, Giorgio Andrea. "A study on the similarities of Deep Belief Networks and Stacked Autoencoders." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174341.
Full textJohansson, Philip. "Incremental Learning of Deep Convolutional Neural Networks for Tumour Classification in Pathology Images." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158225.
Full textViswavarapu, Lokesh Kumar. "Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404616/.
Full textVainigli, Lorenzo. "Registrazioni vocali per la diagnosi di COVID-19 con Deep Convolutional Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22896/.
Full textLenc, Karel. "Representation of spatial transformations in deep neural networks." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:87a16dc2-9d77-49c3-8096-cf3416fa6893.
Full textFarabet, Clément. "Towards real-time image understanding with convolutional networks." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1083/document.
Full textOne of the open questions of artificial computer vision is how to produce good internal representations of the visual world. What sort of internal representation would allow an artificial vision system to detect and classify objects into categories, independently of pose, scale, illumination, conformation, and clutter ? More interestingly, how could an artificial vision system {em learn} appropriate internal representations automatically, the way animals and humans seem to learn by simply looking at the world ? Another related question is that of computational tractability, and more precisely that of computational efficiency. Given a good visual representation, how efficiently can it be trained, and used to encode new sensorial data. Efficiency has several dimensions: power requirements, processing speed, and memory usage. In this thesis I present three new contributions to the field of computer vision:(1) a multiscale deep convolutional network architecture to easily capture long-distance relationships between input variables in image data, (2) a tree-based algorithm to efficiently explore multiple segmentation candidates, to produce maximally confident semantic segmentations of images,(3) a custom dataflow computer architecture optimized for the computation of convolutional networks, and similarly dense image processing models. All three contributions were produced with the common goal of getting us closer to real-time image understanding. Scene parsing consists in labeling each pixel in an image with the category of the object it belongs to. In the first part of this thesis, I propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features. In parallel to feature extraction, a tree of segments is computed from a graph of pixel dissimilarities. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment contains a single object. The system yields record accuracies on several public benchmarks. The computation of convolutional networks, and related models heavily relies on a set of basic operators that are particularly fit for dedicated hardware implementations. In the second part of this thesis I introduce a scalable dataflow hardware architecture optimized for the computation of general-purpose vision algorithms, neuFlow, and a dataflow compiler, luaFlow, that transforms high-level flow-graph representations of these algorithms into machine code for neuFlow. This system was designed with the goal of providing real-time detection, categorization and localization of objects in complex scenes, while consuming 10 Watts when implemented on a Xilinx Virtex 6 FPGA platform, or about ten times less than a laptop computer, and producing speedups of up to 100 times in real-world applications (results from 2011)
Chen, Xiaoran. "Image enhancement effect on the performance of convolutional neural networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18523.
Full textRamesh, Shreyas. "Deep Learning for Taxonomy Prediction." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/89752.
Full textMaster of Science
Taxonomy prediction is a science involving the hierarchical classification of DNA fragments up to the rank species. Given species diversity on Earth, taxonomy prediction gets challenging with (i) increasing number of species (labels) to classify and (ii) decreasing input (DNA) size. In this research, we introduce Predicting Linked Organisms, Plinko, for short. Plinko is a fully-functioning, state-of-the-art predictive system that accurately captures DNA - Taxonomy relationships where other state-of-the-art algorithms falter. Three major challenges in taxonomy prediction are (i) large dataset sizes (order of 109 sequences) (ii) large label spaces (order of 103 labels) and (iii) low resolution inputs (100 base pairs or less). Plinko leverages multi-view convolutional neural networks and the pre-defined taxonomy tree structure to improve multi-level taxonomy prediction for hard to classify sequences under the three conditions stated above. Plinko has the advantage of relatively low storage footprint, making the solution portable, and scalable with anticipated genome database growth. To the best of our knowledge, Plinko is the first to use multi-view convolutional neural networks as the core algorithm in a compositional, alignment-free approach to taxonomy prediction.
Chen, Kuan-Ting, and 陳冠廷. "Warping of Human Face View using Convolutional Deep Belief Networks." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/80694902748248773004.
Full text國立交通大學
電子工程學系 電子研究所
103
In this thesis, we aim at finding a better way of representing and connecting related human face images using the learning approach in convolutional deep belief networks (DBN). Since images are connecting with corresponding representations, it is possible for the convolutional DBN to infer a human face image with a view angle by a given image with the same human face from another view angle. The proposed methods are shown to work well due to the fact that the features detected on an image of an object in different movements are highly correlated. If patterns of feature changes could be modeled by the deep architecture, warping of human face view can be realized. Besides, the reason of using the convolutional deep belief nets as the feature extractor is that they have translated representation and translation invariant properties, which renders a more robust model to translated data. The proposed training algorithm is an unsupervised learning called pre-training. After pre-training, the model becomes a generative model specifying a joint distribution of all data and hidden states. Therefore, with a given image of human face, the model can infer a warping of the face from correlation in hidden states.
Chu, Joseph Lin. "Using Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks for Partially Occluded Object Recognition." Thesis, 2014. http://spectrum.library.concordia.ca/978484/1/Chu_MCompSc_S2014.pdf.
Full textVojt, Ján. "Deep neural networks and their implementation." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-345228.
Full textŠvaralová, Monika. "DRESS & GO: Deep belief networks and Rule Extraction Supported by Simple Genetic Optimization." Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-383249.
Full text