Academic literature on the topic 'Convolutive Neural Networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convolutive Neural Networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Convolutive Neural Networks"

1

Heuillet, Alexandre. "Exploring deep neural network differentiable architecture design." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG069.

Full text
Abstract:
L'intelligence artificielle (IA) a gagné en popularité ces dernières années, principalement en raison de ses applications réussies dans divers domaines tels que l'analyse de données textuelles, la vision par ordinateur et le traitement audio. La résurgence des techniques d'apprentissage profond a joué un rôle central dans ce succès. L'article révolutionnaire de Krizhevsky et al., AlexNet, a réduit l'écart entre les performances humaines et celles des machines dans les tâches de classification d'images. Des articles ultérieurs tels que Xception et ResNet ont encore renforcé l'apprentissage profond en tant que technique de pointe, ouvrant de nouveaux horizons pour la communauté de l'IA. Le succès de l'apprentissage profond réside dans son architecture, conçue manuellement avec des connaissances d'experts et une validation empirique. Cependant, ces architectures n'ont pas la certitude d'être la solution optimale. Pour résoudre ce problème, des articles récents ont introduit le concept de Recherche d'Architecture Neuronale ( extit{NAS}), permettant l'automatisation de la conception des architectures profondes. Cependant, la majorités des approches initiales se sont concentrées sur de grandes architectures avec des objectifs spécifiques (par exemple, l'apprentissage supervisé) et ont utilisé des techniques d'optimisation coûteuses en calcul telles que l'apprentissage par renforcement et les algorithmes génétiques. Dans cette thèse, nous approfondissons cette idée en explorant la conception automatique d'architectures profondes, avec une emphase particulière sur les méthodes extit{NAS} différentiables ( extit{DNAS}), qui représentent la tendance actuelle en raison de leur efficacité computationnelle. Bien que notre principal objectif soit les réseaux convolutifs ( extit{CNNs}), nous explorons également les Vision Transformers (ViTs) dans le but de concevoir des architectures rentables adaptées aux applications en temps réel<br>Artificial Intelligence (AI) has gained significant popularity in recent years, primarily due to its successful applications in various domains, including textual data analysis, computer vision, and audio processing. The resurgence of deep learning techniques has played a central role in this success. The groundbreaking paper by Krizhevsky et al., AlexNet, narrowed the gap between human and machine performance in image classification tasks. Subsequent papers such as Xception and ResNet have further solidified deep learning as a leading technique, opening new horizons for the AI community. The success of deep learning lies in its architecture, which is manually designed with expert knowledge and empirical validation. However, these architectures lack the certainty of an optimal solution. To address this issue, recent papers introduced the concept of Neural Architecture Search (NAS), enabling the learning of deep architectures. However, most initial approaches focused on large architectures with specific targets (e.g., supervised learning) and relied on computationally expensive optimization techniques such as reinforcement learning and evolutionary algorithms. In this thesis, we further investigate this idea by exploring automatic deep architecture design, with a particular emphasis on differentiable NAS (DNAS), which represents the current trend in NAS due to its computational efficiency. While our primary focus is on Convolutional Neural Networks (CNNs), we also explore Vision Transformers (ViTs) with the goal of designing cost-effective architectures suitable for real-time applications
APA, Harvard, Vancouver, ISO, and other styles
2

Maragno, Alessandro. "Programmazione di Convolutional Neural Networks orientata all'accelerazione su FPGA." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12476/.

Full text
Abstract:
Attualmente la Computer Vision, disciplina che consente di estrarre informazioni a partire da immagini digitali, è uno dei settori informatici più in fermento. Grazie alle recenti conquiste e progressi, tale settore ha raggiunto uno stato di maturità tale da poter essere applicato in svariati ambiti, a partire da quello industriale, fino ad arrivare ad applicazioni più vicine alla vita quotidiana. In particolare, si è raggiunto uno stato dell'arte sempre più solido nel campo del riconoscimento di oggetti (object detection) grazie allo sviluppo delle Convolutional Neural Networks (CNN): sistemi che si basano su un modello matematico, che viene gradualmente raffinato in base all'esperienza stessa del sistema nell'esecuzione di questo task, acquisita mediante tecniche di machine learning. Grazie a ciò, le CNN sono in grado di riconoscere e classificare il contenuto di immagini, dando loro una semantica. Tali sistemi però richiedono una grande capacità computazionale ed un'ingente quantità di memoria, pertanto la loro esecuzione avviene maggiormente su architetture potenti, come le GPU. Nonostante ciò, una delle sfide attualmente più importanti riguarda la classificazione in tempo reale di immagini eseguendo le reti neurali convolutive anche su architetture con disponibilità energetica e capacità computazionali ridotte, quali sono i sistemi embedded. Quindi, nel seguente trattato si propone un'implementazione di CNN riconfigurabile realizzata in linguaggio C. Ciò è risultato in un sistema semplice e modulare che con diverse ottimizzazioni ad-hoc può essere considerato un buon candidato per il porting su architetture embedded riconfigurabili FPGA.
APA, Harvard, Vancouver, ISO, and other styles
3

Abbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.

Full text
Abstract:
Dans cette thèse, notre objectif est de développer des modèles d’apprentissage robustes et fiables mais précis, en particulier les Convolutional Neural Network (CNN), en présence des exemples anomalies, comme des exemples adversaires et d’échantillons hors distribution –Out-of-Distribution (OOD). Comme la première contribution, nous proposons d’estimer la confiance calibrée pour les exemples adversaires en encourageant la diversité dans un ensemble des CNNs. À cette fin, nous concevons un ensemble de spécialistes diversifiés avec un mécanisme de vote simple et efficace en termes de calcul pour prédire les exemples adversaires avec une faible confiance tout en maintenant la confiance prédicative des échantillons propres élevée. En présence de désaccord dans notre ensemble, nous prouvons qu’une borne supérieure de 0:5 + _0 peut être établie pour la confiance, conduisant à un seuil de détection global fixe de tau = 0; 5. Nous justifions analytiquement le rôle de la diversité dans notre ensemble sur l’atténuation du risque des exemples adversaires à la fois en boîte noire et en boîte blanche. Enfin, nous évaluons empiriquement la robustesse de notre ensemble aux attaques de la boîte noire et de la boîte blanche sur plusieurs données standards. La deuxième contribution vise à aborder la détection d’échantillons OOD à travers un modèle de bout en bout entraîné sur un ensemble OOD approprié. À cette fin, nous abordons la question centrale suivante : comment différencier des différents ensembles de données OOD disponibles par rapport à une tâche de distribution donnée pour sélectionner la plus appropriée, ce qui induit à son tour un modèle calibré avec un taux de détection des ensembles inaperçus de données OOD? Pour répondre à cette question, nous proposons de différencier les ensembles OOD par leur niveau de "protection" des sub-manifolds. Pour mesurer le niveau de protection, nous concevons ensuite trois nouvelles mesures efficaces en termes de calcul à l’aide d’un CNN vanille préformé. Dans une vaste série d’expériences sur les tâches de classification d’image et d’audio, nous démontrons empiriquement la capacité d’un CNN augmenté (A-CNN) et d’un CNN explicitement calibré pour détecter une portion significativement plus grande des exemples OOD. Fait intéressant, nous observons également qu’un tel A-CNN (nommé A-CNN) peut également détecter les adversaires exemples FGS en boîte noire avec des perturbations significatives. En tant que troisième contribution, nous étudions de plus près de la capacité de l’A-CNN sur la détection de types plus larges d’adversaires boîte noire (pas seulement ceux de type FGS). Pour augmenter la capacité d’A-CNN à détecter un plus grand nombre d’adversaires,nous augmentons l’ensemble d’entraînement OOD avec des échantillons interpolés inter-classes. Ensuite, nous démontrons que l’A-CNN, entraîné sur tous ces données, a un taux de détection cohérent sur tous les types des adversaires exemples invisibles. Alors que la entraînement d’un A-CNN sur des adversaires PGD ne conduit pas à un taux de détection stable sur tous les types d’adversaires, en particulier les types inaperçus. Nous évaluons également visuellement l’espace des fonctionnalités et les limites de décision dans l’espace d’entrée d’un CNN vanille et de son homologue augmenté en présence d’adversaires et de ceux qui sont propres. Par un A-CNN correctement formé, nous visons à faire un pas vers un modèle d’apprentissage debout en bout unifié et fiable avec de faibles taux de risque sur les échantillons propres et les échantillons inhabituels, par exemple, les échantillons adversaires et OOD. La dernière contribution est de présenter une application de A-CNN pour l’entraînement d’un détecteur d’objet robuste sur un ensemble de données partiellement étiquetées, en particulier un ensemble de données fusionné. La fusion de divers ensembles de données provenant de contextes similaires mais avec différents ensembles d’objets d’intérêt (OoI) est un moyen peu coûteux de créer un ensemble de données à grande échelle qui couvre un plus large spectre d’OoI. De plus, la fusion d’ensembles de données permet de réaliser un détecteur d’objet unifié, au lieu d’en avoir plusieurs séparés, ce qui entraîne une réduction des coûts de calcul et de temps. Cependant, la fusion d’ensembles de données, en particulier à partir d’un contexte similaire, entraîne de nombreuses instances d’étiquetées manquantes. Dans le but d’entraîner un détecteur d’objet robuste intégré sur un ensemble de données partiellement étiquetées mais à grande échelle, nous proposons un cadre d’entraînement auto-supervisé pour surmonter le problème des instances d’étiquettes manquantes dans les ensembles des données fusionnés. Notre cadre est évalué sur un ensemble de données fusionné avec un taux élevé d’étiquettes manquantes. Les résultats empiriques confirment la viabilité de nos pseudo-étiquettes générées pour améliorer les performances de YOLO, en tant que détecteur d’objet à la pointe de la technologie.<br>In this thesis, our goal is to develop robust and reliable yet accurate learning models, particularly Convolutional Neural Networks (CNNs), in the presence of adversarial examples and Out-of-Distribution (OOD) samples. As the first contribution, we propose to predict adversarial instances with high uncertainty through encouraging diversity in an ensemble of CNNs. To this end, we devise an ensemble of diverse specialists along with a simple and computationally efficient voting mechanism to predict the adversarial examples with low confidence while keeping the predictive confidence of the clean samples high. In the presence of high entropy in our ensemble, we prove that the predictive confidence can be upper-bounded, leading to have a globally fixed threshold over the predictive confidence for identifying adversaries. We analytically justify the role of diversity in our ensemble on mitigating the risk of both black-box and white-box adversarial examples. Finally, we empirically assess the robustness of our ensemble to the black-box and the white-box attacks on several benchmark datasets.The second contribution aims to address the detection of OOD samples through an end-to-end model trained on an appropriate OOD set. To this end, we address the following central question: how to differentiate many available OOD sets w.r.t. a given in distribution task to select the most appropriate one, which in turn induces a model with a high detection rate of unseen OOD sets? To answer this question, we hypothesize that the “protection” level of in-distribution sub-manifolds by each OOD set can be a good possible property to differentiate OOD sets. To measure the protection level, we then design three novel, simple, and cost-effective metrics using a pre-trained vanilla CNN. In an extensive series of experiments on image and audio classification tasks, we empirically demonstrate the abilityof an Augmented-CNN (A-CNN) and an explicitly-calibrated CNN for detecting a significantly larger portion of unseen OOD samples, if they are trained on the most protective OOD set. Interestingly, we also observe that the A-CNN trained on the most protective OOD set (calledA-CNN) can also detect the black-box Fast Gradient Sign (FGS) adversarial examples. As the third contribution, we investigate more closely the capacity of the A-CNN on the detection of wider types of black-box adversaries. To increase the capability of A-CNN to detect a larger number of adversaries, we augment its OOD training set with some inter-class interpolated samples. Then, we demonstrate that the A-CNN trained on the most protective OOD set along with the interpolated samples has a consistent detection rate on all types of unseen adversarial examples. Where as training an A-CNN on Projected Gradient Descent (PGD) adversaries does not lead to a stable detection rate on all types of adversaries, particularly the unseen types. We also visually assess the feature space and the decision boundaries in the input space of a vanilla CNN and its augmented counterpart in the presence of adversaries and the clean ones. By a properly trained A-CNN, we aim to take a step toward a unified and reliable end-to-end learning model with small risk rates on both clean samples and the unusual ones, e.g. adversarial and OOD samples.The last contribution is to show a use-case of A-CNN for training a robust object detector on a partially-labeled dataset, particularly a merged dataset. Merging various datasets from similar contexts but with different sets of Object of Interest (OoI) is an inexpensive way to craft a large-scale dataset which covers a larger spectrum of OoIs. Moreover, merging datasets allows achieving a unified object detector, instead of having several separate ones, resultingin the reduction of computational and time costs. However, merging datasets, especially from a similar context, causes many missing-label instances. With the goal of training an integrated robust object detector on a partially-labeled but large-scale dataset, we propose a self-supervised training framework to overcome the issue of missing-label instances in the merged datasets. Our framework is evaluated on a merged dataset with a high missing-label rate. The empirical results confirm the viability of our generated pseudo-labels to enhance the performance of YOLO, as the current (to date) state-of-the-art object detector.
APA, Harvard, Vancouver, ISO, and other styles
4

Kapoor, Rishika. "Malaria Detection Using Deep Convolution Neural Network." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613749143868579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Xiafei. "Wide Activated Separate 3D Convolution for Video Super-Resolution." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39974.

Full text
Abstract:
Video super-resolution (VSR) aims to recover a realistic high-resolution (HR) frame from its corresponding center low-resolution (LR) frame and several neighbouring supporting frames. The neighbouring supporting LR frames can provide extra information to help recover the HR frame. However, these frames are not aligned with the center frame due to the motion of objects. Recently, many video super-resolution methods based on deep learning have been proposed with the rapid development of neural networks. Most of these methods utilize motion estimation and compensation models as preprocessing to handle spatio-temporal alignment problem. Therefore, the accuracy of these motion estimation models are critical for predicting the high-resolution frames. Inaccurate results of motion compensation models will lead to artifacts and blurs, which also will damage the recovery of high-resolution frames. We propose an effective wide activated separate 3 dimensional (3D) Convolution Neural Network (CNN) for video super-resolution to overcome the drawback of utilizing motion compensation models. Separate 3D convolution factorizes the 3D convolution into convolutions in the spatial and temporal domain, which have benefit for the optimization of spatial and temporal convolution components. Therefore, our method can capture temporal and spatial information of input frames simultaneously without additional motion evaluation and compensation model. Moreover, the experimental results demonstrated the effectiveness of the proposed wide activated separate 3D CNN.
APA, Harvard, Vancouver, ISO, and other styles
6

Messou, Ehounoud Joseph Christopher. "Handling Invalid Pixels in Convolutional Neural Networks." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98619.

Full text
Abstract:
Most neural networks use a normal convolutional layer that assumes that all input pixels are valid pixels. However, pixels added to the input through padding result in adding extra information that was not initially present. This extra information can be considered invalid. Invalid pixels can also be inside the image where they are referred to as holes in completion tasks like image inpainting. In this work, we look for a method that can handle both types of invalid pixels. We compare on the same test bench two methods previously used to handle invalid pixels outside the image (Partial and Edge convolutions) and one method that was designed for invalid pixels inside the image (Gated convolution). We show that Partial convolution performs the best in image classification while Gated convolution has the advantage on semantic segmentation. As for hotel recognition with masked regions, none of the methods seem appropriate to generate embeddings that leverage the masked regions.<br>Master of Science<br>A module at the heart of deep neural networks built for Artificial Intelligence is the convolutional layer. When multiple convolutional layers are used together with other modules, a Convolutional Neural Network (CNN) is obtained. These CNNs can be used for tasks such as image classification where they tell if the object in an image is a chair or a car, for example. Most CNNs use a normal convolutional layer that assumes that all parts of the image fed to the network are valid. However, most models zero pad the image at the beginning to maintain a certain output shape. Zero padding is equivalent to adding a black frame around the image. These added pixels result in adding information that was not initially present. Therefore, this extra information can be considered invalid. Invalid pixels can also be inside the image where they are referred to as holes in completion tasks like image inpainting where the network is asked to fill these holes and give a realistic image. In this work, we look for a method that can handle both types of invalid pixels. We compare on the same test bench two methods previously used to handle invalid pixels outside the image (Partial and Edge convolutions) and one method that was designed for invalid pixels inside the image (Gated convolution). We show that Partial convolution performs the best in image classification while Gated convolution has the advantage on semantic segmentation. As for hotel recognition with masked regions, none of the methods seem appropriate to generate embeddings that leverage the masked regions.
APA, Harvard, Vancouver, ISO, and other styles
7

Ngo, Kalle. "FPGA Hardware Acceleration of Inception Style Parameter Reduced Convolution Neural Networks." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205026.

Full text
Abstract:
Some researchers have noted that the growth rate in the number of network parameters of many recently proposed state-of-the-art CNN topologies is placing unrealistic demands on hardware resources and limits the practical applications of Neural Networks. This is particularly apparent when considering many of the projected applications (IoT, autonomous vehicles, etc) utilize embedded systems with even greater restrictions on computation and memory bandwidth than the typical research-class computer cluster that the CNN was designed on. The GoogLeNet CNN in 2014 proposed a new level of organization (“Inception Module”) that was demonstrated in competition to achieve similar/better performance, while using an order of magnitude less network parameters than the other competing topologies. This thesis explores the characteristics of the new GoogLeNet inception modules and the implications it presents to current CNN accelerator architectures. A custom FPGA accelerator is proposed to offset the inception module’s increased need to buffer large intermediate convolution arrays through array partitioning and cascading two convolution operations into a single pipeline pass. A Xilinx Artix-7 FPGA was used to implement architecture where it was able continuously supply data to the 331 utilized DSP blocks (approx. half of total available), while using only a quarter of the DDR bandwidth to achieve a peak throughput of 9.11 GFLOPS. The low utilization of the DDR bandwidth suggests that with some optimization, the design can be scaled up to better utilize the available resources and increase throughput.
APA, Harvard, Vancouver, ISO, and other styles
8

Pappone, Francesco. "Graph neural networks: theory and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.

Full text
Abstract:
Le reti neurali artificiali hanno visto, negli ultimi anni, una crescita vertiginosa nelle loro applicazioni e nelle architetture dei modelli impiegati. In questa tesi introduciamo le reti neurali su domini euclidei, in particolare mostrando l’importanza dell’equivarianza di traslazione nelle reti convoluzionali, e introduciamo, per analogia, un’estensione della convoluzione a dati strutturati come grafi. Inoltre presentiamo le architetture dei principali Graph Neural Network ed esponiamo, per ognuna delle tre architetture proposte (Spectral graph Convolutional Network, Graph Convolutional Network, Graph Attention neTwork) un’applicazione che ne mostri sia il funzionamento che l’importanza. Discutiamo, ulteriormente, l’implementazione di un algoritmo di classificazione basato su due varianti dell’architettura Graph Convolutional Network, addestrato e testato sul dataset PROTEINS, capace di classificare le proteine del dataset in due categorie: enzimi e non enzimi.
APA, Harvard, Vancouver, ISO, and other styles
9

Sung, Wei-Hong. "Investigating minimal Convolution Neural Networks (CNNs) for realtime embedded eye feature detection." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281338.

Full text
Abstract:
With the rapid rise of neural networks, many tasks that used to be difficult to complete in traditional methods can now be solved well, especially in the computer vision field. However, as the tasks we have to solve have become more and more complex, the neural networks we use are becoming deeper and larger. Therefore, although some embedded systems are powerful nowadays, most embedded systems still suffer from memory and computation limitations, which means it is hard to deploy our large neural networks on these embedded devices. This project aims to explore different methods to compress the original large model. That is, we first train a baseline model, YOLOv3[1], which is a famous object detection network, and then we use two methods to compress the baseline model. The first method is pruning by using sparsity training, and we do channel pruning according to the scaling factor value after sparsity training. Based on the idea of this method, we have made three explorations. Firstly, we take the union mask strategy to solve the dimension problem of the shortcut-related layers in YOLOv3[1]. Secondly, we try to absorb the shifting factor information into subsequent layers. Finally, we implement the layer pruning and combine it with channel pruning. The second method is pruning by using Neural Architecture Search (NAS), which uses a deep reinforcement framework to automatically find the best compression ratio for each layer. At the end of this report, we analyze the key findings and conclusions of our experiment and purpose the future work which could potentially improve our project.<br>Med den snabba ökningen av neurala nätverk kan många uppgifter som brukade vara svåra att utföra i traditionella metoder nu lösas bra, särskilt inom datorsynsfältet. Men eftersom uppgifterna vi måste lösa har blivit mer och mer komplexa, blir de neurala nätverken vi använder djupare och större. Därför, även om vissa inbäddade system är kraftfulla för närvarande, lider de flesta inbäddade system fortfarande av minnes- och beräkningsbegränsningar, vilket innebär att det är svårt att distribuera våra stora neurala nätverk på dessa inbäddade enheter. Projektet syftar till att utforska olika metoder för att komprimera den ursprungliga stora modellen. Det vill säga, vi tränar först en baslinjemodell, YOLOv3[1], som är ett berömt objektdetekteringsnätverk, och sedan använder vi två metoder för att komprimera basmodellen. Den första metoden är beskärning med hjälp av sparsity training, och vi kanalskärning enligt skalningsfaktorvärdet efter sparsity training. Baserat på idén om denna metod har vi gjort tre utforskningar. För det första tar vi unionens maskstrategi för att lösa dimensionsproblemet för genvägsrelaterade lager i YOLOv3[1]. För det andra försöker vi absorbera informationen om skiftande faktorer i efterföljande lager. Slutligen implementerar vi lagerskärningen och kombinerar det med kanalbeskärning. Den andra metoden är beskärning med NAS, som använder en djup förstärkningsram för att automatiskt hitta det bästa kompressionsförhållandet för varje lager. I slutet av denna rapport analyserar vi de viktigaste resultaten och slutsatserna i vårt experiment och syftar till det framtida arbetet som potentiellt kan förbättra vårt projekt.
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.

Full text
Abstract:
With the development of graph neural networks, this novel neural network has been applied in a broader and broader range of fields. One of the thorny problems researchers face in this field is selecting suitable pooling methods for a specific research task from various existing pooling methods. In this work, based on the existing mainstream graph pooling methods, we develop a benchmark neural network framework that can be used to compare these different graph pooling methods. By using the framework, we compare four mainstream graph pooling methods and explore their characteristics. Furthermore, we expand two methods for explaining neural network decisions for convolution neural networks to graph neural networks and compare them with the existing GNNExplainer. We run experiments on standard graph classification tasks using the developed framework and discuss the different pooling methods’ distinctive characteristics. Furthermore, we verify the proposed extensions of the explanation methods’ correctness and measure the agreements among the produced explanations. Finally, we explore the characteristics of different methods for explaining neural network decisions and the insights of different pooling methods by applying these explanation methods.<br>Med utvecklingen av grafneurala nätverk har detta nya neurala nätverk tillämpats i olika område. Ett av de svåra problemen för forskare inom detta område är hur man väljer en lämplig poolningsmetod för en specifik forskningsuppgift från en mängd befintliga poolningsmetoder. I den här arbetet, baserat på de befintliga vanliga grafpoolingsmetoderna, utvecklar vi ett riktmärke för neuralt nätverk ram som kan användas till olika diagram pooling metoders jämförelse. Genom att använda ramverket jämför vi fyra allmängiltig diagram pooling metod och utforska deras egenskaper. Dessutom utvidgar vi två metoder för att förklara beslut om neuralt nätverk från convolution neurala nätverk till diagram neurala nätverk och jämföra dem med befintliga GNNExplainer. Vi kör experiment av grafisk klassificering uppgifter under benchmarkingramverk och hittade olika egenskaper av olika diagram pooling metoder. Dessutom verifierar vi korrekthet i dessa förklarningsmetoder som vi utvecklade och mäter överenskommelserna mellan dem. Till slut, vi försöker utforska egenskaper av olika metoder för att förklara neuralt nätverks beslut och deras betydelse för att välja pooling metoder i grafisk neuralt nätverk.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography