Academic literature on the topic 'Convolutive Neural Networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convolutive Neural Networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Convolutive Neural Networks"

1

Heuillet, Alexandre. "Exploring deep neural network differentiable architecture design." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG069.

Full text
Abstract:
L'intelligence artificielle (IA) a gagné en popularité ces dernières années, principalement en raison de ses applications réussies dans divers domaines tels que l'analyse de données textuelles, la vision par ordinateur et le traitement audio. La résurgence des techniques d'apprentissage profond a joué un rôle central dans ce succès. L'article révolutionnaire de Krizhevsky et al., AlexNet, a réduit l'écart entre les performances humaines et celles des machines dans les tâches de classification d'images. Des articles ultérieurs tels que Xception et ResNet ont encore renforcé l'apprentissage prof
APA, Harvard, Vancouver, ISO, and other styles
2

Maragno, Alessandro. "Programmazione di Convolutional Neural Networks orientata all'accelerazione su FPGA." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12476/.

Full text
Abstract:
Attualmente la Computer Vision, disciplina che consente di estrarre informazioni a partire da immagini digitali, è uno dei settori informatici più in fermento. Grazie alle recenti conquiste e progressi, tale settore ha raggiunto uno stato di maturità tale da poter essere applicato in svariati ambiti, a partire da quello industriale, fino ad arrivare ad applicazioni più vicine alla vita quotidiana. In particolare, si è raggiunto uno stato dell'arte sempre più solido nel campo del riconoscimento di oggetti (object detection) grazie allo sviluppo delle Convolutional Neural Networks (CNN): sistemi
APA, Harvard, Vancouver, ISO, and other styles
3

Abbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.

Full text
Abstract:
Dans cette thèse, notre objectif est de développer des modèles d’apprentissage robustes et fiables mais précis, en particulier les Convolutional Neural Network (CNN), en présence des exemples anomalies, comme des exemples adversaires et d’échantillons hors distribution –Out-of-Distribution (OOD). Comme la première contribution, nous proposons d’estimer la confiance calibrée pour les exemples adversaires en encourageant la diversité dans un ensemble des CNNs. À cette fin, nous concevons un ensemble de spécialistes diversifiés avec un mécanisme de vote simple et efficace en termes de calcul pour
APA, Harvard, Vancouver, ISO, and other styles
4

Kapoor, Rishika. "Malaria Detection Using Deep Convolution Neural Network." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613749143868579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Xiafei. "Wide Activated Separate 3D Convolution for Video Super-Resolution." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39974.

Full text
Abstract:
Video super-resolution (VSR) aims to recover a realistic high-resolution (HR) frame from its corresponding center low-resolution (LR) frame and several neighbouring supporting frames. The neighbouring supporting LR frames can provide extra information to help recover the HR frame. However, these frames are not aligned with the center frame due to the motion of objects. Recently, many video super-resolution methods based on deep learning have been proposed with the rapid development of neural networks. Most of these methods utilize motion estimation and compensation models as preprocessing to
APA, Harvard, Vancouver, ISO, and other styles
6

Messou, Ehounoud Joseph Christopher. "Handling Invalid Pixels in Convolutional Neural Networks." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98619.

Full text
Abstract:
Most neural networks use a normal convolutional layer that assumes that all input pixels are valid pixels. However, pixels added to the input through padding result in adding extra information that was not initially present. This extra information can be considered invalid. Invalid pixels can also be inside the image where they are referred to as holes in completion tasks like image inpainting. In this work, we look for a method that can handle both types of invalid pixels. We compare on the same test bench two methods previously used to handle invalid pixels outside the image (Partial and Edg
APA, Harvard, Vancouver, ISO, and other styles
7

Ngo, Kalle. "FPGA Hardware Acceleration of Inception Style Parameter Reduced Convolution Neural Networks." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205026.

Full text
Abstract:
Some researchers have noted that the growth rate in the number of network parameters of many recently proposed state-of-the-art CNN topologies is placing unrealistic demands on hardware resources and limits the practical applications of Neural Networks. This is particularly apparent when considering many of the projected applications (IoT, autonomous vehicles, etc) utilize embedded systems with even greater restrictions on computation and memory bandwidth than the typical research-class computer cluster that the CNN was designed on. The GoogLeNet CNN in 2014 proposed a new level of organizatio
APA, Harvard, Vancouver, ISO, and other styles
8

Pappone, Francesco. "Graph neural networks: theory and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.

Full text
Abstract:
Le reti neurali artificiali hanno visto, negli ultimi anni, una crescita vertiginosa nelle loro applicazioni e nelle architetture dei modelli impiegati. In questa tesi introduciamo le reti neurali su domini euclidei, in particolare mostrando l’importanza dell’equivarianza di traslazione nelle reti convoluzionali, e introduciamo, per analogia, un’estensione della convoluzione a dati strutturati come grafi. Inoltre presentiamo le architetture dei principali Graph Neural Network ed esponiamo, per ognuna delle tre architetture proposte (Spectral graph Convolutional Network, Graph Co
APA, Harvard, Vancouver, ISO, and other styles
9

Sung, Wei-Hong. "Investigating minimal Convolution Neural Networks (CNNs) for realtime embedded eye feature detection." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281338.

Full text
Abstract:
With the rapid rise of neural networks, many tasks that used to be difficult to complete in traditional methods can now be solved well, especially in the computer vision field. However, as the tasks we have to solve have become more and more complex, the neural networks we use are becoming deeper and larger. Therefore, although some embedded systems are powerful nowadays, most embedded systems still suffer from memory and computation limitations, which means it is hard to deploy our large neural networks on these embedded devices. This project aims to explore different methods to compress the
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.

Full text
Abstract:
With the development of graph neural networks, this novel neural network has been applied in a broader and broader range of fields. One of the thorny problems researchers face in this field is selecting suitable pooling methods for a specific research task from various existing pooling methods. In this work, based on the existing mainstream graph pooling methods, we develop a benchmark neural network framework that can be used to compare these different graph pooling methods. By using the framework, we compare four mainstream graph pooling methods and explore their characteristics. Furthermore
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!