Academic literature on the topic 'Cooled water'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cooled water.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cooled water"
Kettleborough, C. F., D. G. Waugaman, and M. Johnson. "The Thermal Performance of the Cross-Flow Three-Dimensional Flat Plate Indirect Evaporative Cooler." Journal of Energy Resources Technology 114, no. 3 (September 1, 1992): 181–86. http://dx.doi.org/10.1115/1.2905939.
Full textUsmonov, N., Sh Sanayev, and Z. Yusupov. "CALCULATION OF TEMPERATURE OF ROUTINE WATER COOLED IN IRRIGATED LAYERS." Technical science and innovation 2019, no. 3 (September 18, 2019): 249–55. http://dx.doi.org/10.51346/tstu-01.19.3.-77-0036.
Full textDumont, G., Ph Fontaine Vive Roux, and B. Righini. "Water-cooled electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 440, no. 1 (January 2000): 213–23. http://dx.doi.org/10.1016/s0168-9002(99)00880-3.
Full textKim, Hak Min, and Jeong Kuk Yeom. "Numerical Model for Water-Cooled EGR Cooler Performance Improvement." Transactions of the Korean Society of Mechanical Engineers - B 44, no. 1 (January 31, 2020): 61–67. http://dx.doi.org/10.3795/ksme-b.2020.44.1.061.
Full textJ,, Venkatesan, Nagarajan G, Seeniraj R. V, and Kumar S. "Mathematical Modeling of Water Cooled Automotive Air Compressor." International Journal of Engineering and Technology 1, no. 1 (2009): 50–56. http://dx.doi.org/10.7763/ijet.2009.v1.9.
Full textCai, Jiejin, Claude Renault, and Junli Gou. "Supercritical Water-Cooled Reactors." Science and Technology of Nuclear Installations 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/548672.
Full textKirillov, P. L. "Supercritical water cooled reactors." Thermal Engineering 55, no. 5 (May 2008): 361–64. http://dx.doi.org/10.1134/s0040601508050017.
Full textChambers, Jerre Kelly, and Marvin Lawrence Talansky. "AUTOMATED WATER CONTROL FOR WATER COOLED LASERS." Ophthalmic Surgery, Lasers and Imaging Retina 19, no. 2 (February 1988): 142–43. http://dx.doi.org/10.3928/1542-8877-19880201-19.
Full textKolhe, Mohan, Du Bin, and Eric Hu. "Water Cooled Concentrated Photovoltaic System." International Journal of Smart Grid and Clean Energy 2, no. 2 (2013): 159–63. http://dx.doi.org/10.12720/sgce.2.2.159-163.
Full textSchulenberg, T., J. Starflinger, P. Marsault, D. Bittermann, C. Maráczy, E. Laurien, J. A. Lycklama à Nijeholt, et al. "European supercritical water cooled reactor." Nuclear Engineering and Design 241, no. 9 (September 2011): 3505–13. http://dx.doi.org/10.1016/j.nucengdes.2010.09.039.
Full textDissertations / Theses on the topic "Cooled water"
Zhao, Jiyun Ph D. Massachusetts Institute of Technology. "Stability analysis of supercritical water cooled reactors." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34651.
Full textIncludes bibliographical references (p. 269-277).
The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the reactor core gives the SCWR the potential for high thermal efficiency (45%). However, near the supercritical thermodynamic point, coolant density is very sensitive to temperature which raises concerns about instabilities in the supercritical water-cooled nuclear reactors. To ensure a proper design of SCWR without instability problems, the U.S. reference SCWR design was investigated. The objectives of this work are: (1) to develop a methodology for stability assessment of both thermal-hydraulic and nuclear-coupled stabilities under supercritical pressure conditions, (2) to compare the stability of the proposed SCWR to that of the BWR, and (3) to develop guidance for SCWR designers to avoid instabilities with large margins. Two kinds of instabilities, namely Ledinegg-type flow excursion and Density Wave Oscillations (DWO), have been studied. The DWO analysis was conducted for three oscillation modes: Single channel thermal-hydraulic stability, Coupled-nuclear Out-of-Phase stability and Coupled-nuclear In-Phase stability.
(cont.) Although the supercritical water does not experience phase change, the thermodynamic properties exhibit boiling-like drastic changes around some pseudo-saturation temperature. A three-region model consisting of a heavy fluid region, a heavy-light fluid mixture region and a light fluid region has been used to simulate the supercritical coolant flowing through the core. New non-dimensional governing parameters, namely, the Expansion Number (Nexp) and the Pseudo-Subcooling Number (Npsub) have been identified. A stability map that defines the onset of DWO instabilities has been constructed in the Nexp-Npsu,b plane based on a frequency domain method. It has been found that the U.S. reference SCWR will be stable at full power operating condition with large margin once the proper inlet orifices are chosen. Although the SCWR operates in the supercritical pressure region at steady state, operation at subcritical pressure will occur during a sliding pressure startup process. At subcritical pressure, the stability maps have been developed based on the traditional Subcooling Number and Phase Change Number (also called as Zuber Number). The sensitivity of stability boundaries to different two phase flow models has been studied.
(cont.) It has been found that the Homogcnouls-Nonequilibrium model (HNEM) yields more conservative results at high subcooling numbers while the Homogenous Equilibrium (HEM) model is more conservative at low subcooling numbers. Based on the stability map, a stable sliding pressure startup procedure has been suggested for the U.S. reference SCWR design. To evaluate the stability performance of the U.S. reference SCWR design, comparisons with a typical BWR (Peach Bottom ) have been conducted. Models for BWR stability analysis (Single channel, Coupled-nuclear In-Phase and Out-of-Phase) have been constructed. It is found that, although the SCWR can be stable by proper inlet orificing, it is more sensitive to operating parameters. such as power and flow rate, than a typical BWR. To validate the models developed for both the SCWR and BWR stability analysis, the analytical results were compared with experimental data. The Peach Bottom 2 stability tests were chosen to evaluate the coupled-nuclear stability analysis model. It was found that the analytical model matched the experiment reasonably well for both the oscillation decay ratios and frequencies. Also, the analytical model predicts the same stability trends as the experiment results.
(cont.) Although there arc plenty of tests available for model evaluations at subcritical pressure, the tests at supercritical pressure are very limited. The only test publicly found was for the single channel stability mode. It was found that the three-region model predicts reasonable results compared with the limited test data.
by Jiyun Zhao.
Ph.D.
Ellis, Colleen Laverna, and Allan D. Kraus. "Preliminary design of a water cooled avionics rack." Thesis, Monterey, California: Naval Postgraduate School, 1993. http://hdl.handle.net/10945/24217.
Full textJohnson, Kyle D. "High Performance Fuels for Water-Cooled Reactor Systems." Doctoral thesis, KTH, Reaktorfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201604.
Full textUnder artionden har forskning om nitridbranseln och dess egenskaper bedrivits pa grundval av nitridbransletsatravarda egenskaper avseende dess hoga metall tathet och hog varmeledningsformaga. Dessa egenskaper besitter vasentliga fordelar avseende prestanda, ekonomi och sakerhet for metallkylda som lattvatten reaktorer. Genom forskning har aven centrala begr ansningar identierats for implementering av nitridbranslen for kommersiellt bruk. Begransningar avser den kemiska interaktionen med luft och vattenanga, en uppmarksammad svarighet att sintring av materialet samt hoga kostnader forknippade med den nodvandiga anrikningen av 15-N. Kombinationen av dessa begransningar resulterade, tidigare, i en valgrundad slutsats att nitridbranslet mest andamalsenliga anvandningsomrade var i karnbranslecykeln for snabba reaktorer. Detta da kostnaderna forenade med implementeringen av branslet ar avsevart lagre. Inom detta sammanhang har majoriteten av forskning avseende nitrider bedrivits och fortskrider an idag. Dock, efter karnkraftsolyckan i Fukushima-Daiichi 2011, inleddes en samlad industriell och statlig anstrangning for att undersoka alternativ till sa kallade \olyckstoleranta" och \hogpresterande" branslen. Dessa branslen skulle samtidigt forbattra reaktionstiden for bransleinkapsling systemet mot allvarliga olyckor samt forbattra driftsekonomin av lattvattenreaktorer. Foreslagna kandidater ar urannitrid, uransilicid och en tredje \uran nitrid-silicid", komposit bestaende av en blandning av de foregaende. Genom denna avhandling har en metod faststallts for syntes, tillverkning och karaktarisering av uran nitrid av hog renhet samt uran nitrid-silicid kompositer, forberedda med tekniken SPS (Spark Plasma Sintering). Ett specikt resultat har varit att isolera eekten av processparametrar pa mikrostrukturen pa representativa branslekutsar. Detta mojliggor, i princip, framstallningen av alla tankbara mikrostrukturer utav intresse for tillverkning. Vidare har detta mojliggjort utvecklingen av en hogeligen reproducerbar teknik for framstallningen av branslekutsar med mikrostrukturer skraddarsydda for onskad porositet mellan 88 och 99.9 % TD, och kornstorlek mellan 6 och 24 μm. Dartill har en metod for att belagga en matris av uran nitrid-silicid framarbetats. Detta har mojliggjort utvarderingen av dessa mikrostrukturella parametrars paverkan pa materialens prestanda, sarskilt avseende dess roll som olyckstoleranta branslen. Detta har genererat resultat som ar tatt sammanlankat nitridbranslets prestanda till kutsens mikrostruktur, med viktiga konsekvenser for den potentiella anvandningen av nitrider i lattvatten reaktorer.
QC 20170210
Tan, Yuk Wei. "Development of a small-scale absorption cooled water chiller." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324572.
Full textHwang, Jyh-Tzong. "Experimental evaluation of a passive water cooled containment concept." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28127.
Full textFly, Ashley. "Thermal and water management of evaporatively cooled fuel cell vehicles." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19484.
Full textChan, Ping-lam. "Development of a simulation model for PWR reactor coolant system /." [Hong Kong] : University of Hong Kong, 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1273617X.
Full textFischer, Kai. "Design of a supercritical water cooled reactor pressure vessel and internals /." Karlsruhe : Forschungszentrum Karlsruhe, 2008. http://d-nb.info/991370759/34.
Full textGelbart, W., R. R. Johnson, B. Abeysekera, L. Matei, and D. Niculae. "All-Metal water target with spherical window." Helmholtz-Zentrum Dresden - Rossendorf, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-165885.
Full textXiao, Ruiyang. "The freezing of highly sub-cooled H₂O/D₂O droplets." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211567463.
Full textBooks on the topic "Cooled water"
Raven, Greg. Water-cooled VW performance handbook. 3rd ed. St. Paul, Minn: Motorbooks, 2011.
Find full textMori, Hideo, and Yoshiaki Oka. Supercritical-pressure light water cooled reactors. Tokyo]: Springer, 2014.
Find full textOka, Yoshiaki, and Hideo Mori, eds. Supercritical-Pressure Light Water Cooled Reactors. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55025-9.
Full textEllis, Colleen Laverna. Preliminary design of a water cooled avionics rack. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textKveton, O. K. ITER ISS system alternative specification study revision 1.0. Mississauga, Ont: Canadian Fusion Fuels Technology Project, 1990.
Find full textRoss, W. E. Thermosyphoning analysis with the CATHENA model of the blanket & first wall cooling loop for the SEAFP reactor design. Mississauga, Ont: CFFTP, 1994.
Find full textRoss, W. E. Analysis of loss of electrical power with the CATHENA model of the blanket & first wall cooling loop for the SEAFP reactordesign. Mississauga, Ont: CFFTP, 1994.
Find full textRoss, W. E. Modified Cathena Model of a Shield Circuit for ITER. Mississauga, Ont: CFFTP, 1993.
Find full textKveton, O. K. ITER cooling system: Analysis of heat transfer media, operation and safety of cooling loop and blanket during conditioning and baking. Toronto: Ontario Hydro, 1990.
Find full textBook chapters on the topic "Cooled water"
Calabrese, Steven R. "Water Cooled Systems." In Practical Controls, 427–39. New York: River Publishers, 2020. http://dx.doi.org/10.1201/9781003151128-23.
Full textToulouevski, Yuri N., and Ilyaz Y. Zinurov. "Water-Cooled Furnace Elements." In Innovation in Electric Arc Furnaces, 215–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36273-6_12.
Full textToulouevski, Yuri N., and Ilyaz Y. Zinurov. "Water-Cooled Furnace Elements." In Innovation in Electric Arc Furnaces, 193–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03802-0_12.
Full textZhang, Xiuping, Lei Jia, Junfeng Wu, Rujin Wang, Jiong Li, and Yu Zhong. "Efficient Water-Cooled Chillers." In Handbook of Energy Systems in Green Buildings, 755–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49120-1_20.
Full textZhang, Xiuping, Lei Jia, Junfeng Wu, Rujin Wang, Jiong Li, and Yu Zhong. "Efficient Water-Cooled Chillers." In Handbook of Energy Systems in Green Buildings, 1–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49088-4_20-1.
Full textAit Saada, Sonia, Idir Kecili, and Rezki Nebbali. "Water-Cooled Photovoltaic Panel Efficiency." In ICREEC 2019, 61–67. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_8.
Full textDolan, Thomas J. "Pulsed and Water-Cooled Magnets." In Magnetic Fusion Technology, 71–118. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5556-0_3.
Full textTamada, Isao, Yasuhiro Mizuno, Hiroyasu Shimanuki, Takaki Okochi, and Zong Xiumei. "Development of a Water-Cooled Condenser." In Lecture Notes in Electrical Engineering, 591–605. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8506-2_40.
Full textOka, Yoshiaki, and Shinichi Morooka. "Reactor Design and Safety." In Supercritical-Pressure Light Water Cooled Reactors, 21–248. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55025-9_2.
Full textOka, Yoshiaki. "Introduction and Overview." In Supercritical-Pressure Light Water Cooled Reactors, 1–20. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55025-9_1.
Full textConference papers on the topic "Cooled water"
Harada, Masaki, Takashi Yasuda, Shota Terachi, Sergio Pujols, and Jason R. Spenny. "Water Cooled Charge Air Cooler Development." In SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0651.
Full textLee, Kyu Hyun, and Jong Pil Won. "Thermal Analysis of Compact Water Cooled Engine Oil Cooler." In 1995 Vehicle Thermal Management Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971819.
Full textSamarkin, Vadim, Alexander Aleksandrov, Valeri Dubikovsky, and Alexis Kudryashov. "Water-cooled bimorph correctors." In 5th International Workshop on Adaptive Optics for Industry and Medicine, edited by Wenhan Jiang. SPIE, 2005. http://dx.doi.org/10.1117/12.669365.
Full textChalgren, Robert D., Lawrence Barron, and Daniel R. Bjork. "A Controllable Water Cooled Charge Air Cooler (WCCAC) for Diesel Trucks." In SAE Commercial Vehicle Engineering Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-2614.
Full textLee, Kyu Hyun, and Jong Pil Won. "Thermal Design of Compact Circular External Water Cooled Engine Oil Cooler." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961812.
Full textMoore, David A., Matt Slaby, Tahir Cader, and Kevin Regimbal. "Hybrid warm water cooled supercomputing system." In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517604.
Full textDuffey, R., L. K. H. Leung, D. Martin, B. Sur, and M. Yetisir. "A Supercritical Water-Cooled Small Modular Reactor." In ASME 2011 Small Modular Reactors Symposium. ASMEDC, 2011. http://dx.doi.org/10.1115/smr2011-6548.
Full textAminov, Rashid. "EMERGENCY COOLING SYSTEM FOR WATER-COOLED REACTORS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/41/s16.001.
Full textAminov, Rashid. "EMERGENCY COOLING SYSTEM FOR WATER-COOLED REACTORS." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/4.1/s16.002.
Full textMaughan, Clyde V., and Matthias Svoboda. "Water-cooled stator windings copper oxide issues." In 2016 IEEE Electrical Insulation Conference (EIC). IEEE, 2016. http://dx.doi.org/10.1109/eic.2016.7548654.
Full textReports on the topic "Cooled water"
Dale, Gregory E., Michael Andrew Holloway, and Elias Noel Pulliam. Water Cooled Mirror Design. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1177180.
Full textChiang, I., J. Geller, C.-I. Pai, C. Pearson, A. Pendzick, and E. Zitvogel. Water-cooled platinum C target. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/1157477.
Full textMacdonald, Dgiby, Mirna Urquidi-Macdonald, and Jonathan Pitt. Electrochemistry of Water-Cooled Nuclear Reactors. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/890516.
Full textForsberg, C. (Advanced technologies for water-cooled reactors). Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6888806.
Full textPimblott, S. M. Effects of Water Radiolysis in Water Cooled Reactors. Technical progress report. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/761635.
Full textThompson, M. W. Boundry description for removal of water cooled chillers. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/10103106.
Full textAuthor, Not Given. Advanced water-cooled phosphoric acid fuel cell development. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7039349.
Full textT. R. Allen and G. S. Was. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/944040.
Full textPimblott, S. M. Effects of Water Radiolysis in Water Cooled Reactors, ''NERI Proposal No.99-001C''. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/762090.
Full textPimblott, S. M. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/761538.
Full text