Academic literature on the topic 'Cooling system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cooling system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cooling system"

1

Ding, Yuzhang, Haocheng Ji, Rui Liu, Yuwei Jiang, and Minxiang Wei. "Study of the thermal behavior of a battery pack with a serpentine channel." AIP Advances 12, no. 5 (2022): 055028. http://dx.doi.org/10.1063/5.0089378.

Full text
Abstract:
To effectively enhance the thermal security of the Li-ion battery packs used in the electric vehicle industry, novel cooling systems equipped with serpentine channels are established. Then, the heat generation model is established and verified experimentally. In this research study, the structure of the cooling channel, the coolant velocity, the coolant temperature, and the coolant flow direction are considered to be the influencing factors. The results demonstrate that, by adopting the serpentine cooling channel, a better thermal conductivity can be obtained, and the type-B cooling system possesses a more reasonable structure. For different types of liquid cooling systems, the coolant temperature has a small influence on the temperature nephogram; however, for the same type of system, the coolant temperature strongly influences the temperature distribution. Similarly, the temperature difference is only related to the type of cooling system, with ∼6.09 and 5.53 K obtained for the type-A and type-B cooling systems, respectively. Furthermore, allowing the coolant in the serpentine cooling channels to flow in opposite directions can lower the value of the maximum temperature and temperature difference.
APA, Harvard, Vancouver, ISO, and other styles
2

Fan, Huan-ran, and Cheng Li. "ICONE23-1351 INVESTIGATION ON AIR COOLING OF THE PASSIVE CONTAINMENT COOLING SYSTEM." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sirikasemsuk, Sarawut, Songkran Wiriyasart, Ruktai Prurapark, Nittaya Naphon, and Paisarn Naphon. "Water/Nanofluid Pulsating Flow in Thermoelectric Module for Cooling Electric Vehicle Battery Systems." International Journal of Heat and Technology 39, no. 5 (2021): 1618–26. http://dx.doi.org/10.18280/ijht.390525.

Full text
Abstract:
We investigated the results of the cooling performance of the pulsating water/nanofluids flowing in the thermoelectric cooling module for cooling electric vehicle battery systems. The experimental system was designed and constructed to consider the effects of the water block configuration, hot and cold side flow rates, supplied power input, and coolant types on the cooling performance of the thermoelectric module. The measured results from the present study with the Peltier module are verified against those without the thermoelectric module. Before entering the electric vehicle battering system with a Peltier module, the inlet coolant temperatures were 2.5-3.5℃ lower than those without the thermoelectric system. On the hot side, the maximum COP of the thermoelectric cooling module was 1.10 and 1.30 for water and nanofluids as coolant, respectively. The results obtained from the present approach can be used to optimize the battery cooling technique to operate in an appropriate temperature range for getting higher energy storage, durability, lifecycles, and efficiency.
APA, Harvard, Vancouver, ISO, and other styles
4

Pambudi, Nugroho Agung, Husin Bugis, Ilham Wahyu Kuncoro, et al. "Preliminary experimental of GPU immersion-cooling." E3S Web of Conferences 93 (2019): 03003. http://dx.doi.org/10.1051/e3sconf/20199303003.

Full text
Abstract:
A typical information technology system takes around 40% of the total energy used in cooling the system. There are three major classifications of cooling system and they are: water cooling, close loop liquid cooling, and immersion cooling systems. Immersion cooling has been observed to be the latest trend in cooling systems for IT devices. It is a cooling procedure that is carried out through the immersion of all computer components in a dielectric coolant. This research examined the cooling process of GPU using this immersion method. Mineral oil, because of its high dielectric strength, is used as a medium fluid. The temperature difference between the use of fan and immersion cooling was then measured using a benchmark software. The result showed that the immersion cooling produced a lower GPU temperature compared to the conventional fan. The working temperature of the GPU with the use of immersion method was 70°C while it was 80°C with the conventional fan method.
APA, Harvard, Vancouver, ISO, and other styles
5

Andrey, Ermakov, Salakhov Rishat, Khismatullin Renat, and Idiatullin Bulat. "Development and Research of the Adaptive Cooling System with an Electric Pump." International Journal of Heat and Technology 39, no. 2 (2021): 638–42. http://dx.doi.org/10.18280/ijht.390235.

Full text
Abstract:
This paper studies the effect of the electrically-driven pump on improving the efficiency of internal combustion engine cooling systems. Numerical one-dimensional simulation of the system operation was performed according to the European transient cycle (ETC). The paper compares the cooling system with a belt-driven pump and electrically-driven pump. It was found that the electrically-driven cooling system not only could maintain a more stable coolant temperature, and also provided energy savings for the pump drive. It can be noted that the mechanically-driven cooling system has disproportionately high energy costs, unstable coolant temperature, so in case of sudden changes in operating modes, the built-in thermostat cannot keep it within two degrees Celsius. At high engine speeds and low load, the drive consumes too much power, and when thermostat is faulty and the coolant is overcooled, at low speeds and high load, the coolant is overheating. The paper also considers options with electric-driven pump with and without an enabled thermostat. With a working thermostat and electrically driven pump, the system consumes a little more energy, because the thermostat does not open fully and as a result, the pump speed is 8.2% higher than in a cooling system without a thermostat.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jin-Kuk, Guang Chung Lee, Frank X. X. Zhu, and Robin Smith. "Cooling System Design." Heat Transfer Engineering 23, no. 6 (2002): 49–61. http://dx.doi.org/10.1080/01457630290098754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maurya, Rajesh Kumar, M. S. Niranjan, Nagendra Kumar Maurya, and Shashi Prakash Dwivedi. "Development of a System to Control Flow of Coolant in Turning Operation." Journal of Mechanical Engineering 17, no. 1 (2020): 17–31. http://dx.doi.org/10.24191/jmeche.v17i1.15216.

Full text
Abstract:
Automation of cooling system in machine tools is an effective method for achieving higher productivity and increased tool life. A cooling system is designed to control the operating temperature on the cutting tool tip by circulating coolant through a reservoir built on the top of the machine tool. This arrangement maintains the coolant flow rate as per variation of cutting tool tip temperature sensed by LM-35 temperature sensor which is located 1 cm away (calibrated distance) from the cutting tool tip and whose output voltage is linearly proportional to the temperature. Coolant flow rate is varied in such a manner that the temperature of the cutting tool tip remains within fixed value of temperature. The aim of present work is to develop a cooling control panel system to provide coolant on cutting tool tip in turning operation of mild steel. The coolant flow rate can be increased or decreased as per the variation of sensor temperature during turning of mild steel with high speed steel (HSS) cutting tool at different depth of cut, and spindle speed ,keeping feed rate constant which results in effective cooling of the cutting tool tip. The experiments were carried out with and without use of coolant. It supplies the coolant as per instructions of cooling control panel system which results in saving of coolant as well as power. The mechatronics application of designed cooling control panel system enabled the reduction in cutting tool tip temperature in more robust way as compare to conventional cooling system.
APA, Harvard, Vancouver, ISO, and other styles
8

Koenhardono, Eddy Setyo. "Performance Improvement of Hopper Cooling System on Traditional Fishing Boats Due to Excessive Cooling." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 17, no. 2 (2020): 58–64. http://dx.doi.org/10.14710/kapal.v17i2.29496.

Full text
Abstract:
The engine cooling system that drives traditional fishing boats uses a hopper cooler type system that experiences excessive cooling. Ideally, the temperature of the cooling water in the hopper should be approximately 70-80°C. The fact, it is only 42°C, thus reducing the effective power generated by the engine. This excessive cooling may cause an increase in fuel consumption and emissions. One method to reduce excessive cooling is to increase the temperature of the cooling media in the hopper. The author has conducted a simple experiment on a traditional fishing boat in Kenjeran, Surabaya, by installing a valve to control the flow of seawater entering the hopper. However, the use of seawater as a cooling medium has a maximum operating temperature limitation, so there is no precipitation of salt and lime, which is 50oC. At this temperature, the benefits are not large, only an increase in speed of 4.4% and a fuel reduction of 4.3%. Therefore, the existing seawater cooling system must be modified to an indirect seawater cooling system to get optimum performance improvement. The re-modification allows the temperature of the freshwater in the hopper to be maintained at 80°C, so that the speed of the fishing boat may increase by 14%, with a fuel savings of 12.3%.
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Yufei, Zhiguo Liu, Shiwu Li, and Qingyong Jin. "Design and Optimization of an Immersion Liquid Cooling System in Internet Datacenter." International Journal of Heat and Technology 39, no. 6 (2021): 1923–29. http://dx.doi.org/10.18280/ijht.390629.

Full text
Abstract:
With the development of high-performance chips, the heat flux of Internet datacenter (IDC) is on the rise, and heat dissipation becomes a major bottleneck of IDC development. The cooling needs of the IDC room can hardly be met by the traditional method of air cooling. In recent years, immersion liquid cooling has attracted a growing attention, due to its excellent performance. This paper designs and optimizes an immersion liquid cooling system for IDC. Multiple numerical simulations were carried out to analyze the influence of the system parameters on heat dissipation, and improve the system efficiency using a dielectric coolant. Specifically, 20 graphics processing units (GPUs) and 2 central processing units (CPUs) were set up in each machine of the liquid cooling server. Then, the GPU and CPU temperature was examined under different opening positions on the server top plate, inlet coolant temperatures, and coolant flow speeds. The results show that a 30mm-wide, 430mm-long opening should be set at the upper part of the GPU array, 20mm away from the top plate. The cooling effect can be optimized at the inlet temperature of 30℃, and the coolant flow speed of 3m3/h.
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yuhe, Jie Ji, Zewei Guo, and Peng Su. "Comparison of the solar PV cooling system and other cooling systems." International Journal of Low-Carbon Technologies 13, no. 4 (2018): 353–63. http://dx.doi.org/10.1093/ijlct/cty035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography