To see the other types of publications on this topic, follow the link: Copper chromite.

Journal articles on the topic 'Copper chromite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Copper chromite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

George, Reni, and Sankaran Sugunan. "Synthesis and Characterization of Magnesium Copper Chromite Spinels." International Journal of Scientific Research 3, no. 1 (2012): 44–45. http://dx.doi.org/10.15373/22778179/jan2014/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prasad, R. "Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate." Materials Letters 59, no. 29-30 (2005): 3945–49. http://dx.doi.org/10.1016/j.matlet.2005.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kawamoto, Aparecida M., Luiz Claudio Pardini, and Luis Claudio Rezende. "Synthesis of copper chromite catalyst." Aerospace Science and Technology 8, no. 7 (2004): 591–98. http://dx.doi.org/10.1016/j.ast.2004.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dunham, A. C., and F. C. F. Wilkinson. "Sulphide droplets-and the Unit 11/12 chromite band, Rhum: a mineralogical study." Geological Magazine 122, no. 5 (1985): 539–48. http://dx.doi.org/10.1017/s0016756800035457.

Full text
Abstract:
AbstractA microscopic and electron microprobe investigation has been made of six samples of the allivalite–chromitite–peridotite band at the junction of Units 11 and 12, Eastern Layered Series, Rhum. Analyses are presented of olivine, plagioclase and pyroxene, the plagioclase showing reverse zoning in the chromitite. Sulphide droplets occur within and above the chromitite, and contain pyrrhotite, pentlandite, cubanite, bornite, digenite, chalcocite, native copper and electrum, as well as chromite zoned to magnetite, spinel and ilmenite. The variation from aluminous chromite to chromite in the
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, J. B., and J. K. Kouba. "Electron Microscopy of Barium-Promoted Copper Chromite." Proceedings, annual meeting, Electron Microscopy Society of America 43 (August 1985): 390–91. http://dx.doi.org/10.1017/s0424820100118825.

Full text
Abstract:
Copper chromite was reported as an effective catalyst for the hydrogenation of esters to alcohols by Homer Adkins in 1931, and it still remains the catalyst of choice for this reaction. Its most common commercial application is in the hydrogenation of fatty esters to detergent range linear alcohols. Typical reaction conditions are relatively severe: 200-250°C and 2000-4000 psig hydrogen. Barium is often used as a promoter and such a catalyst is prepared by codeposition of barium and copper chromates followed by calcination to the mixed chromite. The catalyst is usually activated by reduction w
APA, Harvard, Vancouver, ISO, and other styles
6

Reactions of allylic alcohols, V., R. Hubaut, M. Daage, and J. P. Bonnelle. "Selective hydrogenation on copper chromite catalysts." Applied Catalysis 22, no. 2 (1986): 243–55. http://dx.doi.org/10.1016/s0166-9834(00)82633-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monconduit, Laure, Nabil Allali, Annie Leblanc, and Michel Danot. "Lithium intercalation into copper ferrite and copper chromite: Redox extraction of copper." Materials Research Bulletin 27, no. 7 (1992): 839–46. http://dx.doi.org/10.1016/0025-5408(92)90179-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khasin, A. V., I. I. Simentsova, and T. M. Yurieva. "Interaction of hydrogen with copper chromite surface." Reaction Kinetics & Catalysis Letters 52, no. 1 (1994): 113–18. http://dx.doi.org/10.1007/bf02129858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simentsova, I. I., A. V. Khasin, and T. M. Yurieva. "Character of hydrogen interaction with copper chromite." Reaction Kinetics & Catalysis Letters 58, no. 1 (1996): 49–56. http://dx.doi.org/10.1007/bf02071104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sansare, S. D., V. R. Choudhary, and L. K. Doraiswamy. "Reversible adsorption of thiophene on copper chromite." Journal of Chemical Technology and Biotechnology. Chemical Technology 33, no. 3 (2007): 140–44. http://dx.doi.org/10.1002/jctb.504330305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hanic, F., G. Plesch, P. Dolezel, and J. Ovecková. "Study of copper chromite catalysts, III. Structure and catalytic activity of copper chromite catalyst in reductive alkylation reaction." Reaction Kinetics and Catalysis Letters 32, no. 2 (1986): 393–98. http://dx.doi.org/10.1007/bf02068341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Zeng Xin, Guo Ming Wang, and Qiang Liang. "The Comparison of Three Recycling Processes of Copper Chromite Spent Catalysts." Advanced Materials Research 599 (November 2012): 566–69. http://dx.doi.org/10.4028/www.scientific.net/amr.599.566.

Full text
Abstract:
Three technologies of recycling copper chromite spent catalysts from furfuryl production by furfural hydrogenization were developed. After the organic species was removed from the solid waste by vacuum pressure distillation at 130°C, the resultant solid waste catalyst was mixed with soda ash, followed by roasting, leaching and removing silicon in a reverberating furnace to obtain sodium chromate. Dissolving the cupric oxide in soda ash solution to remove chrome and then dissolving it in nitric acid, cupric nitrate can be obtained. A certain proportion of such sodium chromate and cupric nitrate
APA, Harvard, Vancouver, ISO, and other styles
13

Khasin, A. A., T. M. Yur’eva, L. M. Plyasova, et al. "Mechanistic features of reduction of copper chromite and state of absorbed hydrogen in the structure of reduced copper chromite." Russian Journal of General Chemistry 78, no. 11 (2008): 2203–13. http://dx.doi.org/10.1134/s1070363208110418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bianchi, C. L., M. G. Cattania, and V. Ragaini. "XPS study on barium-promoted copper chromite catalysts." Surface and Interface Analysis 19, no. 1-12 (1992): 533–36. http://dx.doi.org/10.1002/sia.740190199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rao, R., A. Dandekar, R. T. K. Baker, and M. A. Vannice. "Properties of Copper Chromite Catalysts in Hydrogenation Reactions." Journal of Catalysis 171, no. 2 (1997): 406–19. http://dx.doi.org/10.1006/jcat.1997.1832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Krieger, T. A., L. M. Plyasova, L. P. Solovyeva, T. M. Yur'eva, and O. V. Makarova. "The Structure of Copper Chromite Activated by Hydrogen." Materials Science Forum 228-231 (July 1996): 627–32. http://dx.doi.org/10.4028/www.scientific.net/msf.228-231.627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Basak, D., and J. Ghose. "Infrared studies on some substituted copper chromite spinels." Spectrochimica Acta Part A: Molecular Spectroscopy 50, no. 4 (1994): 713–18. http://dx.doi.org/10.1016/0584-8539(94)80008-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Meksh, P. A., A. A. Anderson, and M. Shimanska. "Synthesis of nitrogen containing heterocycles over copper chromite." Chemistry of Heterocyclic Compounds 30, no. 7 (1994): 822–28. http://dx.doi.org/10.1007/bf01169640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Widiyarti, Galuh. "Karakterisasi Katalis Cu-Cr /Kieselguhr." REAKTOR 5, no. 1 (2017): 12. http://dx.doi.org/10.14710/reaktor.5.1.12-15.

Full text
Abstract:
Copper-chromite active metal catalyst was prepared by using impregnation method with kieselguhr (Al2O3SiO2) as supporting material. The content of metal active was 20% with 1:1 proportion of complex metal Cu : Cr. The specific surface area of catalyst gave specific surface area of 2,537 m2/ gram. X-ray Diffraction analysis, shown that active metal of Cu-copper Cu and cristobalite SiO2. Temperature program analysis, shown that reduction temperature of catalyst was 300 0Cusing by Scanning Electronic Microscope (SEM), the morphology of catalyst was determined.Keyword : Copper-Chromite catalyst, i
APA, Harvard, Vancouver, ISO, and other styles
20

Santacesaria, E., G. Carotenuto, R. Tesser, and M. Di Serio. "Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts." Chemical Engineering Journal 179 (January 2012): 209–20. http://dx.doi.org/10.1016/j.cej.2011.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Plyasova, L. M., I. Yu Molina, T. A. Krieger, L. P. Davydova, and T. M. Yurieva. "Structure transformations of copper chromite under reduction–reoxidation conditions." Journal of Molecular Catalysis A: Chemical 158, no. 1 (2000): 331–36. http://dx.doi.org/10.1016/s1381-1169(00)00100-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kaya, Ismail C., and Hasan Akyildiz. "Production and Characterization of Magnesium-Doped Copper Chromite Fibers." physica status solidi (a) 215, no. 16 (2017): 1700795. http://dx.doi.org/10.1002/pssa.201700795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Murthy, K. S. R. C., and J. Ghose. "CO Oxidation on Substituted Copper Chromite Spinel Oxide Catalysts." Journal of Catalysis 147, no. 1 (1994): 171–76. http://dx.doi.org/10.1006/jcat.1994.1127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

PILLAI, R. B. C. "ChemInform Abstract: Reactions of Benzyl Alcohol over Copper Chromite." ChemInform 29, no. 25 (2010): no. http://dx.doi.org/10.1002/chin.199825106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Prasad, R., and Pratichi Singh. "A Review on CO Oxidation Over Copper Chromite Catalyst." Catalysis Reviews 54, no. 2 (2012): 224–79. http://dx.doi.org/10.1080/01614940.2012.648494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hayashi, Shinsuke, Kenji Fukaya, and Hajime Saito. "Sintering of lanthanum chromite doped with zinc or copper." Journal of Materials Science Letters 7, no. 5 (1988): 457–58. http://dx.doi.org/10.1007/bf01730687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

CASTIGLIONI, G., A. VACCARI, G. FIERRO, et al. "Structure and reactivity of copper-zinc-cadmium chromite catalysts." Applied Catalysis A: General 123, no. 1 (1995): 123–44. http://dx.doi.org/10.1016/0926-860x(94)00237-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Choudhary, Vasant R., and K. R. Srinivasan. "Kinetics of desorption of hydrogen from copper chromite catalyst." Journal of Chemical Technology and Biotechnology. Chemical Technology 33, no. 5 (2007): 271–80. http://dx.doi.org/10.1002/jctb.504330509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Deng, Kui Lin, Wen Hui Jin, Fu Chen Zhang, et al. "Preparation and Characterization of Dioxanone and Poly(dioxanone)." Advanced Materials Research 711 (June 2013): 22–25. http://dx.doi.org/10.4028/www.scientific.net/amr.711.22.

Full text
Abstract:
In this paper, the ammonium dichromate and copper nitrate were used as raw materials to prepare the copper chromite, and nanocopper chromite as a catalyst was used to synthesize the monomer dioxanone in diethylene glycol dehydrogenation. Under the strict conditions of no water and no oxygen, the stannous octoate was selected to catalyze ring-opening polymerization of the dioxanone to prepare the polydioxanone. And dioxanone and its polymers were characterized with IR spectroscopy,1H NMR spectroscopy, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC ) measurements.
APA, Harvard, Vancouver, ISO, and other styles
30

Khasin, A. V., I. I. Simentsova, and T. M. Yur’eva. "Moderate-temperature reduction of copper chromite by hydrogen and hydrogen desorption from the surface of reduced chromite." Kinetics and Catalysis 41, no. 2 (2000): 282–86. http://dx.doi.org/10.1007/bf02771431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fedorov, M. S., L. N. Ertseva, and L. B. Tsymbulov. "Corrosive Interaction between Slags High in Copper and Nickel Oxides and Periclase, Periclase-Chromite, and Chromite Refractories." Refractories and Industrial Ceramics 46, no. 5 (2005): 309–14. http://dx.doi.org/10.1007/s11148-006-0003-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Paulose, Sanoop, Deepthi Thomas, T. Jayalatha, R. Rajeev, and Benny K. George. "TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst." Journal of Thermal Analysis and Calorimetry 124, no. 2 (2016): 1099–108. http://dx.doi.org/10.1007/s10973-015-5207-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Laine, Jorge, Joaquin Brito, Francisco Severino, et al. "Surface copper enrichment by reduction of copper chromite catalyst employed for carbon monoxide oxidation." Catalysis Letters 5, no. 1 (1990): 45–54. http://dx.doi.org/10.1007/bf00772092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Madhavi Latha, B., V. Sadasivam, and B. Sivasankar. "A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts." Catalysis Communications 8, no. 7 (2007): 1070–73. http://dx.doi.org/10.1016/j.catcom.2006.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ye, Ming Quan, Ai Jun Han, Zhou Shuo Chu, Jian Fei Che, and Chen Wang. "Synthesis and Characterization of Mn-Doped Copper Chromite Black Pigments." Advanced Materials Research 602-604 (December 2012): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.71.

Full text
Abstract:
Mn-doped black pigments CuMnxCr2-xO4(x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) were synthesized by precursor coprecipitation method, and characterized by TG-DTA, XRD, FTIR and colorimetric analysis. The TG-DTA curves showed the crystal transition temperature was at about 800°C and mass loss ended at about 450°C. The infrared spectra displayed vibrations of spinel phase. XRD patterns displayed the characteristic peaks of the tetragonal phase spinel structure and proved that Mn substituted Cr in the spinel crystal lattice. L*a*b* analysis showed that all samples are black pigments with blue intensit
APA, Harvard, Vancouver, ISO, and other styles
36

Roy, S., and J. Ghose. "Syntheses and studies on some copper chromite spinel oxide composites." Materials Research Bulletin 34, no. 7 (1999): 1179–86. http://dx.doi.org/10.1016/s0025-5408(99)00109-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

MEKSH, P. A., A. A. ANDERSON, and M. SHIMANSKA. "ChemInform Abstract: Synthesis of Nitrogen-Containing Heterocycles on Copper Chromite." ChemInform 26, no. 18 (2010): no. http://dx.doi.org/10.1002/chin.199518067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Edrissi, M., S. A. Hosseini, and M. Soleymani. "Synthesis and characterisation of copper chromite nanoparticles using coprecipitation method." Micro & Nano Letters 6, no. 10 (2011): 836. http://dx.doi.org/10.1049/mnl.2011.0430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Deutsch, Keenan L., and Brent H. Shanks. "Hydrodeoxygenation of lignin model compounds over a copper chromite catalyst." Applied Catalysis A: General 447-448 (December 2012): 144–50. http://dx.doi.org/10.1016/j.apcata.2012.09.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pillai, R. B. C. "A study of the preactivation of a copper chromite catalyst." Catalysis Letters 26, no. 3-4 (1994): 365–71. http://dx.doi.org/10.1007/bf00810610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Egorova, Marina. "PREPARATION AND PROPERTIES OF FERRITE AND CHROMITE OF COPPER (II)." University News. North-Caucasian Region. Technical Sciences Series, no. 2 (June 2021): 69–74. http://dx.doi.org/10.17213/1560-3644-2021-2-69-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

V. H. Martirosyan, M. E. Sasuntsyan, and V. V. Savich. "OBTAINING OF FERROSILICOCHROMIUM POWDER ALLOY BY SILICOTHERMIC REDUCTION AND STUDY OF THE MECHANISM OF THIS PROCESS." International Academy Journal Web of Scholar 1, no. 1(31) (2019): 11–17. http://dx.doi.org/10.31435/rsglobal_wos/31012019/6307.

Full text
Abstract:

 
 
 
 The process of obtaining a powder ferrosilicochromic alloy by the method of silicothermic reduction of local chromites and slags of copper smelters was investigated. The mechanism of this process has been studied. It is established that the best results are obtained in the case of slag / chromite ratio = 1: 1, when an alloy with microdispersed structure and high strength is obtained. The optimum composition of the resulting alloy is as follows: 35,1% Fe; 36,35% Si and 28,53% Cr, with a metal yield of 98,4%. The obtained alloy powder can be used as an acidified and a
APA, Harvard, Vancouver, ISO, and other styles
43

Patil, Prajakta R, V. N. Krishnamurthy, and Satyawati S Joshi. "Effect of Nano-Copper Oxide and Copper Chromite on the Thermal Decomposition of Ammonium Perchlorate." Propellants, Explosives, Pyrotechnics 33, no. 4 (2008): 266–70. http://dx.doi.org/10.1002/prep.200700242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tagliaferro, F. S., E. A. N. Fernandes, M. A. Bacchi, and E. A. Campos. "INAA for the validation of chromium and copper determination in copper chromite by infrared spectrometry." Journal of Radioanalytical and Nuclear Chemistry 269, no. 2 (2006): 403–6. http://dx.doi.org/10.1007/s10967-006-0398-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Govender, Alisa, Abdul Mahomed, and Holger Friedrich. "Water: Friend or Foe in Catalytic Hydrogenation? A Case Study Using Copper Catalysts." Catalysts 8, no. 10 (2018): 474. http://dx.doi.org/10.3390/catal8100474.

Full text
Abstract:
Copper oxide supported on alumina and copper chromite were synthesized, characterized, and subsequently tested for their catalytic activity toward the hydrogenation of octanal. Thereafter, the impact of water addition on the conversion and selectivity of the catalysts were investigated. The fresh catalysts were characterized using X-ray diffraction (XRD), BET surface area and pore volume, SEM, TEM, TGA-DSC, ICP, TPR, and TPD. An initial catalytic testing study was carried out using the catalysts to optimize the temperature and the hydrogen-to-aldehyde ratio—which were found to be 160 °C and 2,
APA, Harvard, Vancouver, ISO, and other styles
46

MURTHY, K. S. R. C., and J. GHOSE. "ChemInform Abstract: CO Oxidation on Substituted Copper Chromite Spinel Oxide Catalysts." ChemInform 25, no. 31 (2010): no. http://dx.doi.org/10.1002/chin.199431018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

CASTIGLIONI, G. L., A. VACCARI, G. FIERRO, et al. "ChemInform Abstract: Structure and Reactivity of Copper-Zinc-Cadmium Chromite Catalysts." ChemInform 26, no. 28 (2010): no. http://dx.doi.org/10.1002/chin.199528019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Basak, D., and J. Ghose. "Studies on the Conduction Process of Cadmium-Substituted Copper Chromite Spinels." Journal of Solid State Chemistry 112, no. 2 (1994): 222–27. http://dx.doi.org/10.1006/jssc.1994.1295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Simentsova, I. I., A. V. Khasin, L. P. Davydova, and T. M. Yurieva. "Kinetics of the medium-temperature reduction of copper chromite with hydrogen." Reaction Kinetics and Catalysis Letters 82, no. 2 (2004): 355–61. http://dx.doi.org/10.1023/b:reac.0000034848.70151.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mane, R. B., A. A. Ghalwadkar, A. M. Hengne, Y. R. Suryawanshi, and C. V. Rode. "Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol." Catalysis Today 164, no. 1 (2011): 447–50. http://dx.doi.org/10.1016/j.cattod.2010.10.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!