Academic literature on the topic 'Copper nanoparticles (colloidal solution)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Copper nanoparticles (colloidal solution).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Copper nanoparticles (colloidal solution)"
SEKIGUCHI, M., K. OIKAWA, M. NAKAHARA, Y. INABA, T. MAEDA, A. MATSUI, and H. ISHIZAKI. "Preparation of Cu nanoparticle colloid from a Cu ion solution by using protein surfactant." MRS Advances 4, no. 24 (2019): 1393–98. http://dx.doi.org/10.1557/adv.2019.72.
Full textKrasochko, P. A., R. B. Korochkin, and M. A. Ponaskov. "Estimation of biocidal effect of metal and bioelement nanoparticles in a unicellular eukaryotic test system." Siberian Herald of Agricultural Science 52, no. 1 (March 28, 2022): 106–13. http://dx.doi.org/10.26898/0370-8799-2022-1-12.
Full textKrasochko, Petr, Rudolf Korochkin, Pavel Krasochko, Sergey Gvozdev, and Mikhail Ponaskov. "Optical properties of colloidal solutions of metal nanoparticles." Scientific Horizons 23, no. 10 (October 28, 2020): 47–53. http://dx.doi.org/10.48077/scihor.23(10).2020.47-53.
Full textM Kareem, Mahmood. "The Effect of Laser Shots on Morphological and Optical Properties of Copper Oxide NPs Prepared by Nd-Yag Laser of 1064 nm Wavelengths in Distilled Water." Passer Journal of Basic and Applied Sciences 3, no. 2 (2019): 200–206. http://dx.doi.org/10.24271/psr.33.
Full textAntipov, A. A., A. G. Putilov, A. V. Osipov, A. E. Shepelev, V. N. Glebov, and A. M. Maliutin. "Synthesis of copper nanoparticles by laser ablation." Journal of Physics: Conference Series 2316, no. 1 (August 1, 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2316/1/012004.
Full textBegletsova, N., E. Selifonova, A. Zakharevich, R. Chernova, and E. Glukhovskoy. "Preparation of Colloidal Solution of Copper Nanoparticles Using Cationic Surfactant." «Bulletin of the South Ural State University series "Chemistry"» 9, no. 4 (2017): 14–21. http://dx.doi.org/10.14529/chem170402.
Full textAni, Hussam Nadum Abdalraheem Al, Anca Maria Cimbru, Corneliu Trisca-Rusu, Szidonia Katalin Tanczos, Adriana Cuciureanu, and Aurelia Cristina Nechifor. "Iono-molecular Separation with Composite Membranes II. Preparation and characterization of polysulphone and composite nanoparticles." Revista de Chimie 68, no. 2 (March 15, 2017): 203–9. http://dx.doi.org/10.37358/rc.17.2.5420.
Full textGAREEV, B. M., A. M. ABDRAKHMANOV, and G. L. SHARIPOV. "SONOLUMINESCENCE SPECTROSCOPY OF COLLOIDAL SUSPENSIONS: MOLECULAR, IONIC AND ATOMIC LUMINESCENCE DURING SONOCHEMICAL DECOMPOSITION OF SILICON DIOXIDE NANOPARTICLES CONTAINING RUTHENIUM AND COPPER COMPOUNDS." Izvestia Ufimskogo Nauchnogo Tsentra RAN, no. 4 (December 13, 2021): 16–21. http://dx.doi.org/10.31040/2222-8349-2021-0-4-16-21.
Full textYilleng, TM, NY Samuel, D. Stephen, JA Akande, ZM Agendeh, and LA Madaki. "Biosynthesis of Copper and Iron Nanoparticles using Neem (Azadirachta indica) Leaf Extract and their Anti-bacterial Activity." Journal of Applied Sciences and Environmental Management 24, no. 11 (January 11, 2021): 1987–91. http://dx.doi.org/10.4314/jasem.v24i11.20.
Full textFigueiredo, André Q., Carolina F. Rodrigues, Natanael Fernandes, Duarte de Melo-Diogo, Ilídio J. Correia, and André F. Moreira. "Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy." Nanomaterials 12, no. 18 (September 13, 2022): 3166. http://dx.doi.org/10.3390/nano12183166.
Full textDissertations / Theses on the topic "Copper nanoparticles (colloidal solution)"
Yan, Hao. "Solubility phase transition behavior of gold nanoparticles in colloidal solution." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2336.
Full textBatsmanova, L. M., L. M. Gonchar, N. Yu Taran, and A. A. Okanenko. "Using a Colloidal Solution of Metal Nanoparticles as Micronutrient Fertiliser for Cereals." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35441.
Full textBondarenko, I. S., О. Г. Аврунін, O. Gryshkov, B. Glasmacher, S. I. Bondarenko, A. V. Krevsun, and M. V. Rakhimova. "Acoustomagnetic detection of magnetic nanoparticles in a model." Thesis, The International Journal of Artificial Organs, 2019. http://openarchive.nure.ua/handle/document/9878.
Full textTegenaw, Ayenachew G. Ph D. "Environmental Implications of Cu-Based Nanoparticles and Biocides Products." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573573946625869.
Full textDarugar, Qusai A. "Surface effects on the ultrafast electronic relaxation of some semiconductor and metallic nanoparticles." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-06272006-160645/.
Full textZhang, John, Committee Member ; Wang, Zhong, Committee Member ; El-Sayed, Mostafa, Committee Chair ; Orlando, Thomas, Committee Member ; Lyon, Andrew, Committee Member.
Yousef, Narin. "Solution-based and flame spray pyrolysis synthesis of cupric oxide nanostructures and their potential application in dye-sensitized solar cells." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119329.
Full textLopes, Filomeno Cleber. "Dispersions de nanoparticules magnétiques de type coeur-coquille MFe2O4@g-Fe2O3 dans des solvants polaires : réactivité électrochimique et rôle de l'interface oxyde/solution sur les propriétés colloïdales." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066673/document.
Full textDispersions of magnetic nanoparticles (NPs) in polar solvents have been inspiring many applications, to cite a few, biomedical, industrial and thermoelectrical ones. Also called ferrofluids (FFs), they are usually colloidal dispersions of magnetic spinel ferrite NPs, which can be stabilized thanks to electrostatic repulsion. A good understanding of the interface between NPs and the carrier solvent is thus a key point, which governs the interparticle interactions, the nanostructure and many other applicative properties. We study here the electrochemical reactivity of core-shell ferrite MFe2O4@ Fe2O3 (M=Fe,Co,Mn,Cu,Zn) NPs in aqueous medium. Square-wave voltammetry and potential controlled coulometry techniques are used on these non-conventional electroactive systems in order to evidence the shell of maghemite ( Fe2O3), the main function of which is to ensure the thermodynamical stability of NPs in acidic medium. We also present a new process for the elaboration of maghemite based FF in polar solvents, tested in water and applied to dimethyl sulfoxide (DMSO). Departing from the point of zero charge, the NPs are charged in a controlled way by adding acid or base, which enables us to better control the charge and the counter-ions nature, as well as the amount of free electrolyte in the dispersion. Stable dispersions are obtained thanks to electrostatic repulsion, also in DMSO. Small Angle X-ray scattering and Dynamic Light Scattering are used to understand the nanostructure and quantify the interparticle interactions. Specific ionic effects are evidenced as well as the strong influence of the solid/liquid interface on the migration of the NPs in a thermal gradient
RIFI, EL HOUSSEINE. "Extraction metallique par des gels hydrophobes." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13158.
Full textIder, Mina. "Elaboration et caractérisation des nanomatériaux à base de métaux nobles." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1022/document.
Full textIn this thesis work, the synthesis of silver nanoparticles (Ag) is carried out by a simple, efficient and fast method based on the reduction of silver nitrate (AgNO3) in an organic medium (ethanol) under heating by micro irradiation (MW) for a few seconds in the presence of an aqueous emulsion of latex copolymer. The experiments were performed either by varying the experimental parameters one after the other (classical approach) or by means of the experimental design methodology which serves to vary simultaneously these experimental conditions in order to both optimize and evaluate the impact of these factors on the physicochemical properties of the nanoparticles. The main goal is to prepare a maximum concentration of silver nanoparticles with a minimum concentration of latex copolymer and AgNO3. The prepared nanoparticles were found to be extremely stable in colloidal solution with very narrow size distributions, which confirms the high quality and the uniform diameter of the nanoparticles obtained by the microwave synthesis approach. This could possibly be due to the stabilizing effect produced by the latex molecules, which is a good environment for effectively controlling the growth of metallic silver nanoparticles. As the main objective of such realization of the silver nanoparticle synthesis by the MW method opens the way to the exploration of surface plasmonic effects in photocatalytic reactions using well-defined semiconducting structures (Bi2O3 , In2O3, TiO2 ...)
Stockham, Katherine. "Antioxidants in food systems: influencing factors." Thesis, 2017. https://vuir.vu.edu.au/37865/.
Full textBooks on the topic "Copper nanoparticles (colloidal solution)"
Rudolph, Martin. Nanoparticle-polymer-composites: The solution and spray drying process with an emphasis on colloidal interactions. Freiberg: Technische Universität Bergakademie, 2013.
Find full textBook chapters on the topic "Copper nanoparticles (colloidal solution)"
Hassinen, Antti, José C. Martins, and Zeger Hens. "Solution NMR Toolbox for Colloidal Nanoparticles." In Nanoparticles, 273–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44823-6_10.
Full textDestro, Priscila. "Synthesis of Gold-Copper Nanoparticles by Colloidal Method Varying the Compositions as a Function of the Synthesis Final Temperature." In Colloidal Nanoparticles for Heterogeneous Catalysis, 17–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03550-1_2.
Full textTabor, Christopher, Radha Narayanan, and Mostafa A. El-Sayed. "Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Heterogeneous or Homogeneous?" In Model Systems in Catalysis, 395–414. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98049-2_18.
Full textBhusari, Vivek, Amit Bansiwal, and Sadhana Rayalu. "Removal of Hexavalent Chromium from Aqueous Solution by Alumina-Supported Copper Aluminum Oxide Nanoparticles." In Smart Technologies for Energy, Environment and Sustainable Development, 291–97. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6148-7_30.
Full textTorre, J. García de la, F. G. Díaz Baños, and H. E. Pérez Sánchez. "Computational Methods for Dynamic Electro‐Optic Properties of Macromolecules and Nanoparticles in Solution." In Molecular and Colloidal Electro-Optics, 109–34. CRC Press, 2016. http://dx.doi.org/10.1201/9781420009859-5.
Full textBugár, I., I. Capek, J. Ivan, L. Chitu, E. Majková, and D. Chorvát. "Time-resolved absorption spectroscopy of metal nanoparticles in colloidal solution." In Femtochemistry and Femtobiology, 545–48. Elsevier, 2004. http://dx.doi.org/10.1016/b978-044451656-5/50107-9.
Full textLai, Chun-Feng. "Colloidal Photonic Crystals Containing Copper-Oxide and Silver Nanoparticles with Tunable Structural Colors." In Advances in Colloid Science. InTech, 2016. http://dx.doi.org/10.5772/65007.
Full text"Comparative Study of Production of Stable Colloidal Copper Nanoparticles Using Microreactor and Advanced-Flow Reactors®." In Chemical and Bioprocess Engineering, 427–45. Apple Academic Press, 2015. http://dx.doi.org/10.1201/b18402-43.
Full textYadav, Sandhya, and P. K. Bajpai. "Role of processing parameters in solution routes for controlling size, shape, and morphology of chalcogenide nanoparticles." In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems, 99–130. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823833-2.00029-5.
Full textA.H. Alzahrani, Hassan. "CuO and MWCNTs Nanoparticles Filled PVA-PVP Nanocomposites: Morphological, Optical, Dielectric, and Electrical Characteristics." In Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105810.
Full textConference papers on the topic "Copper nanoparticles (colloidal solution)"
Yuksel, Anil, Michael Cullinan, and Jayathi Murthy. "Thermal Energy Transport Below the Diffraction Limit in Close-Packed Metal Nanoparticles." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4968.
Full textHan, Min, Zhilin Yang, and Ruomian Yang. "Research for Metallographic Organization of Gold Nanoparticles." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21006.
Full textSanehira, Erin M., Chang-Ching Tu, and Lih Y. Lin. "Solution-processed photodetectors using colloidal germanium nanoparticles." In 2012 IEEE Photonics Conference (IPC). IEEE, 2012. http://dx.doi.org/10.1109/ipcon.2012.6358654.
Full textSanehira, Erin M., Chang-Ching Tu, and Lih Y. Lin. "Solution-processed Photodetectors using Non-toxic, Colloidal ZnS-AgInS2 Nanoparticles." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_si.2013.cth4j.2.
Full textRosso, Vanessa, Jerome Loicq, Z. Hens, Yvon Renotte, and Yves Lion. "Size-dependent third-order optical nonlinearity of InP nanoparticles colloidal solution." In Photonics Europe, edited by Richard M. De La Rue, Pierre Viktorovitch, Clivia M. Sotomayor Torres, and Michele Midrio. SPIE, 2004. http://dx.doi.org/10.1117/12.545881.
Full textVidela, Fabian A., Gustavo A. Torchia, Daniel S. Schinca, Lucía B. Scaffardi, Pablo Moreno, Cruz Méndez, Luis Roso, L. Giovanetti, and Jose Ramallo Lopez. "Role of supercontinuum in the fragmentation of colloidal gold nanoparticles in solution." In SPIE NanoScience + Engineering, edited by Michael T. Postek and John A. Allgair. SPIE, 2009. http://dx.doi.org/10.1117/12.831032.
Full textMalik, S. N., H. Ahmed, M. Shahid, N. Haider, M. A. Malik, and P. O'Brien. "Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach." In 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST 2013). IEEE, 2013. http://dx.doi.org/10.1109/ibcast.2013.6512127.
Full textHelmy, A. S., J. Irizar, S. Rutledge, J. Dinglasan, D. Anderson, C. Goh, and J. Goh. "Photonic Crystal Fibers: A Platform for Raman Spectroscopy of Colloidal Nanoparticles in Solution." In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781345.
Full textBudiati, Inayah Mumpuni, Fatkhiyatus Sa’adah, Nabila Dyah Rifani, and Ali Khumaeni. "Effect of solvent in the synthesis of colloidal copper nanoparticles by pulse laser ablation method." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5141616.
Full textHolubnycha, V., M. Pogorielov, Viktoriia Korniienko, O. Kalinkevych, O. Ivashchenko, B. Peplinska, and M. Jarek. "Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190323.
Full textReports on the topic "Copper nanoparticles (colloidal solution)"
Chefetz, Benny, Baoshan Xing, and Yona Chen. Interactions of engineered nanoparticles with dissolved organic matter (DOM) and organic contaminants in water. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7699863.bard.
Full text