To see the other types of publications on this topic, follow the link: Copper nanoparticles (colloidal solution).

Dissertations / Theses on the topic 'Copper nanoparticles (colloidal solution)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 dissertations / theses for your research on the topic 'Copper nanoparticles (colloidal solution).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Yan, Hao. "Solubility phase transition behavior of gold nanoparticles in colloidal solution." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Batsmanova, L. M., L. M. Gonchar, N. Yu Taran, and A. A. Okanenko. "Using a Colloidal Solution of Metal Nanoparticles as Micronutrient Fertiliser for Cereals." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35441.

Full text
Abstract:
We have developed the technology of using the colloidal solution of metal nanoparticles as fertilizers, which characterized by easiness to use, environmental safety and absence of corrosive properties. Colloidal solutions of biogenic metals, water-based, such as Fe, Mn, Zn, Mo, Co, Cu, and Ag, produced by a patented method of bittern natural colloidal solutions of the above metals were used. Seed treatment with colloidal solution of metal nanoparticles stored genetic purity grade, increased plant immune status via regulation of oxidative metabolism, photosynthetic activity, resistance to pathogens, and optimization of water regime of various winter wheat ecotypes during ontogenesis. Results of industrial tests proved that it is environ-mentally safe and economically feasible, since the cost of one liter of colloidal solutions of nanoparticles of metals ranges from 50-70 USD providing 500% level profitability. So, for the first time managed to opti-mize the function of biogenic metals through the use of physical and chemical characteristics of colloidal nanoparticle solutions to realize the productive potential of plants. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35441
APA, Harvard, Vancouver, ISO, and other styles
3

Bondarenko, I. S., О. Г. Аврунін, O. Gryshkov, B. Glasmacher, S. I. Bondarenko, A. V. Krevsun, and M. V. Rakhimova. "Acoustomagnetic detection of magnetic nanoparticles in a model." Thesis, The International Journal of Artificial Organs, 2019. http://openarchive.nure.ua/handle/document/9878.

Full text
Abstract:
Magnetic nanoparticles (MNPs) are used in medicine for targeted drug delivyry to the area of the cancer. The installation consists of the ultrasound generator, the permanent magnet, the glass containerwith the colloidal mixture, the multi-turn coil about of the glass tube and the voltmeter. The experimental result corrilates with the calculated ones. It is suggested that AMM can used to detect MNPs in the real biological substance.
APA, Harvard, Vancouver, ISO, and other styles
4

Tegenaw, Ayenachew G. Ph D. "Environmental Implications of Cu-Based Nanoparticles and Biocides Products." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573573946625869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Darugar, Qusai A. "Surface effects on the ultrafast electronic relaxation of some semiconductor and metallic nanoparticles." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-06272006-160645/.

Full text
Abstract:
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2007.
Zhang, John, Committee Member ; Wang, Zhong, Committee Member ; El-Sayed, Mostafa, Committee Chair ; Orlando, Thomas, Committee Member ; Lyon, Andrew, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
6

Yousef, Narin. "Solution-based and flame spray pyrolysis synthesis of cupric oxide nanostructures and their potential application in dye-sensitized solar cells." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119329.

Full text
Abstract:
The dye sensitized solar cell (DSSC) is a promising low-cost technology alternative to conventional solar cell in certain applications. A DSSC is a photo-electrochemical photovoltaic device, mainly composed of a working electrode, a dye sensitized semiconductor layer, an electrolyte and a counter electrode. Sunlight excites the dye, producing electrons and holes that can be transported by the semiconductor and electrolyte to the external circuit, converting the sunlight into an electrical current. A material that could be useful for DSSCs is the nanoscale cupric oxide, which can act as a p-type semiconductor and has interesting properties such as low thermal emittance and relatively good electrical properties. The goal of this project was to synthesize and characterize CuO nanoparticles using three different methods and look into each products potential use and efficiency in DSSCs. The particles were synthesized using two different solution based chemical precipitation methods and a flame spray pyrolysis method, yielding nanostructures with different compositions, structures and sizes ranging from ~20 to 1000 nm. The nanoparticle powder synthesized by the flame spray pyrolysis route was tested as semiconductor layer in the working electrode of the DSSC. Current-voltage measurements presented low solar conversion efficiencies with a reversed current, meaning that the cupric oxide cells did not work in a desirable way. Further studies of the cupric oxide synthesis and its suitability in DSSCs are needed to increases the future possibilities for gaining well working p-type DSSCs with higher efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
7

Lopes, Filomeno Cleber. "Dispersions de nanoparticules magnétiques de type coeur-coquille MFe2O4@g-Fe2O3 dans des solvants polaires : réactivité électrochimique et rôle de l'interface oxyde/solution sur les propriétés colloïdales." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066673/document.

Full text
Abstract:
Les dispersions de nanoparticules magnétiques (NPs) dans les solvants polaires sont utilisées dans de nombreuses applications dans des domaines variés, du biomédical à l'environnement ou à l'énergie. Aussi appelés ferrofluides (FFs), ces systèmes sont des dispersions de ferrites spinelle magnétiques pouvant être stabilisées par des répulsions électrostatiques. Cela nécessite une bonne compréhension de l'interface NPs/solvant porteur, qui contrôle les interactions entre NPs, la nanostructure et de nombreuses autres propriétés. Nous étudions ici en milieu aqueux la réactivité électrochimique de particules c¿ur/couronne de type MFe2O4@ Fe2O3 (M = Fe,Co,Mn,Cu,Zn), espèces électroactives non conventionnelles. La voltammétrie à signaux carrés et la coulométrie à potentiel contrôlé permettent d'étudier la coquille de maghémite ( Fe2O3), dont le rôle est la protection de l'oxyde mixte du c¿ur en milieu acide. D'autre part, un nouveau procédé d'élaboration de dispersions dans les solvants polaires, testé dans l'eau, est appliqué au diméthylsulfoxide (DMSO). A partir du point de charge nulle des NPs, un ajout connu d'acide ou de base permet de contrôler la charge des NPs, la nature des contreions et la quantité d'électrolyte libre. Des dispersions stabilisées par des répulsions électrostatiques sont obtenues dans le DMSO. La diffusion de rayons X aux petits angles et la diffusion dynamique de la lumière sont utilisées pour comprendre la nanostructure et quantifier les interactions entre particules. De forts effets spécifiques liés aux ions sont mis en évidence ainsi que le rôle de l'interface solide liquide, en particulier sur les propriétés de thermodiffusion
Dispersions of magnetic nanoparticles (NPs) in polar solvents have been inspiring many applications, to cite a few, biomedical, industrial and thermoelectrical ones. Also called ferrofluids (FFs), they are usually colloidal dispersions of magnetic spinel ferrite NPs, which can be stabilized thanks to electrostatic repulsion. A good understanding of the interface between NPs and the carrier solvent is thus a key point, which governs the interparticle interactions, the nanostructure and many other applicative properties. We study here the electrochemical reactivity of core-shell ferrite MFe2O4@ Fe2O3 (M=Fe,Co,Mn,Cu,Zn) NPs in aqueous medium. Square-wave voltammetry and potential controlled coulometry techniques are used on these non-conventional electroactive systems in order to evidence the shell of maghemite ( Fe2O3), the main function of which is to ensure the thermodynamical stability of NPs in acidic medium. We also present a new process for the elaboration of maghemite based FF in polar solvents, tested in water and applied to dimethyl sulfoxide (DMSO). Departing from the point of zero charge, the NPs are charged in a controlled way by adding acid or base, which enables us to better control the charge and the counter-ions nature, as well as the amount of free electrolyte in the dispersion. Stable dispersions are obtained thanks to electrostatic repulsion, also in DMSO. Small Angle X-ray scattering and Dynamic Light Scattering are used to understand the nanostructure and quantify the interparticle interactions. Specific ionic effects are evidenced as well as the strong influence of the solid/liquid interface on the migration of the NPs in a thermal gradient
APA, Harvard, Vancouver, ISO, and other styles
8

RIFI, EL HOUSSEINE. "Extraction metallique par des gels hydrophobes." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13158.

Full text
Abstract:
Etude de l'extraction liquide-gel de cu, v et eu. On montre que les lois de la thermodynamique d'extraction de cu par les acyl-4 pyrazolones-5 ne sont pas pertubees par la presence du polymere, mais que la cinetique l'est fortement. L'impregnation des polybutadienes par la trilamylamine presente des difficultes; l'utilisation de pvc gonfle dans des solutions d'oxyde d'octylphenyl n,n-diisobutylcarbamoylmethylphosphine dans tbp est interessante
APA, Harvard, Vancouver, ISO, and other styles
9

Ider, Mina. "Elaboration et caractérisation des nanomatériaux à base de métaux nobles." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1022/document.

Full text
Abstract:
Dans ce travail de thèse, la synthèse de nanoparticules d'argent (Ag) est réalisée par une méthode simple, efficace et rapide basée sur la réduction du nitrate d'argent (AgNO3) dans un milieu organique (éthanol) sous chauffage par irradiation micro-ondes (MW) pendant quelques secondes en présence d'une émulsion aqueuse de copolymère latex. Les expériences ont été effectuées soit de manière séquentielle en faisant varier les paramètres expérimentaux les uns après les autres (approche classique) ou bien en moyennant la méthodologie des plans d'expérience qui sert à varier simultanément ces conditions expérimentales dans le but à la fois d'optimiser et d'évaluer l'impact de ces facteurs sur les propriétés physico-chimiques des particules produites. L'objectif est d'arriver à préparer un maximum de concentration en nanoparticules d'argent avec un minimum de concentration en copolymère latex et en AgNO3. Les nanoparticules préparées sont trouvées extrêmement stables en solution colloïdale avec des distributions de taille très étroites, ce qui confirme la qualité élevée et le diamètre uniforme des nanoparticules obtenues par l'approche de synthèse micro-ondes. Ceci pourrait être probablement dû à l'effet de stabilisation produit par les molécules du latex, qui est un bon environnement pour contrôler efficacement la croissance de nanoparticules métalliques d'argent. En tant que principal objectif d'une telle réalisation de la synthèse de nanoparticules d'argent par la méthode MW ouvre la voie à l'exploitation d'effets plasmoniques de surface dans des réactions photocatalytiques en utilisant des structures semi-conductrices bien définies (Bi2O3, In2O3, TiO2...)
In this thesis work, the synthesis of silver nanoparticles (Ag) is carried out by a simple, efficient and fast method based on the reduction of silver nitrate (AgNO3) in an organic medium (ethanol) under heating by micro irradiation (MW) for a few seconds in the presence of an aqueous emulsion of latex copolymer. The experiments were performed either by varying the experimental parameters one after the other (classical approach) or by means of the experimental design methodology which serves to vary simultaneously these experimental conditions in order to both optimize and evaluate the impact of these factors on the physicochemical properties of the nanoparticles. The main goal is to prepare a maximum concentration of silver nanoparticles with a minimum concentration of latex copolymer and AgNO3. The prepared nanoparticles were found to be extremely stable in colloidal solution with very narrow size distributions, which confirms the high quality and the uniform diameter of the nanoparticles obtained by the microwave synthesis approach. This could possibly be due to the stabilizing effect produced by the latex molecules, which is a good environment for effectively controlling the growth of metallic silver nanoparticles. As the main objective of such realization of the silver nanoparticle synthesis by the MW method opens the way to the exploration of surface plasmonic effects in photocatalytic reactions using well-defined semiconducting structures (Bi2O3 , In2O3, TiO2 ...)
APA, Harvard, Vancouver, ISO, and other styles
10

Stockham, Katherine. "Antioxidants in food systems: influencing factors." Thesis, 2017. https://vuir.vu.edu.au/37865/.

Full text
Abstract:
For well over 20 years the Oxygen Radical Absorbance Capacity (ORAC) assay has been an important research tool in identifying antioxidant candidates in food and serum samples. The ORAC value is derived from a series of fluorescence intensity measurements taken over a period of time, usually a few hours. The kinetics of this reaction is controlled by the sustained release of peroxyl radicals at 37°C by an azo compound (AAPH). The peroxyl radicals attack the fluorescent probe causing a gradual decrease in fluorescence intensity. Ultimately, the test yields fluorescence decay curves over time, with the presence of any antioxidants in a sample having a protective effect, delaying probe decay and resulting in a greater area under the decay curve. This forms the basis of the ORAC measurement. Concerns have been raised about the applicability of this assay, chemical interferences influencing the data, and the use of ORAC values to attribute health benefits of foods. In an effort to curb misrepresentation of health benefits from ORAC data, the USDA retracted its ORAC database in 2012 and published a statement by Dr Ronald Prior, a founding researcher for the ORAC assay. The explanatory statement by Dr Prior identified the misapplication of ORAC values and misleading perceived health benefits as major reasons for withdrawal of the database. Despite this, ORAC remains a popular assay, and the method is widely used as a product development and marketing tool. Some researchers have reported that ORAC values can be influenced by factors such as choice of solvent, chemical constituents in matrices, and pH conditions. However, little has been published on antioxidant synergies in food systems and their contribution to the ORAC value. Given the predisposition of the assay to interferences, a better understanding of antioxidant synergies is necessary to understand the contributing factors to measurement in real foods, and also to determine how these values may be manipulated. With the USDA caution in mind, this research was carried out to systematically investigate the factors influencing the ORAC measurement and its interpretation. Firstly, an alternative mode of reporting antioxidant activity to consumers on product labeling was proposed. Calculations needed to convert ORAC units from μM Trolox equivalents (μM T.E/kg or μM T.E/L) to mass units (g T.E/kg or g T.E/L) of Trolox equivalents per kg or per L of foodstuff are provided. We propose that mass units are less misleading to consumers, by not reporting very large and impressive-looking values when a simple conversion reveals most of them to be much more modest when viewed as a mass of vitamin E equivalent. For example, the antioxidant activity of blueberries when measured by the ORAC assay was equivalent to over 71,000 μM of Trolox equivalents. When converted, the blueberries can be said to have the same antioxidant activity as 17.9g of vitamin E per kg of fruit (17.9g T.E/kg). This new mode of reporting was successfully applied to a range of commodities including fruit, confection and beverages. Influencing factors, including environmental conditions, role of additives and nanoparticles and interactions between classes of chemical constituents were all investigated. Environmental conditions, specifically rainfall, were found to influence the levels of antioxidant compounds/bioactives in Australian wines. Six chemical constituents were identified as warranting further investigation; namely 6-methylcoumarin, protocatechuic acid, vanillic acid, p-coumaric acid, rutin and chlorogenic acid. Significant differences were also observed between the antioxidant capacity of wines by in vitro ORAC and ex vivo CAA-RBC assays, where wines with similar ORAC values had vastly different bioavailability and activity in the cellular system. Amino acids and CuNPs additives were found to greatly influence the antioxidant measurements of “superfoods”. Results indicated strong enhancements and synergies related to the properties of the amino acids and complexes formed with Cu(I) and essentially matrix independent.. The order of antioxidant enhancement in bilberry, coffee berry, and apple concentrates was Tryptophan > Tyrosine > Methionine ≥ Histidine ≥ 4-Hydroxyproline. This order was also consistent with the order of calculated bond dissociation energies (BDEs), reflecting the inherent antioxidant potentials of the amino acids studied. Density Functional Theory (DFT) was used to support a proposed “substrate zone” and “antioxidant zone” postulate for amino acids and related additives and this concept assists in demonstrating potential mechanisms involved in achieving such extraordinary enhancements and synergies. Histidine was used as a model system for DFT calculations, and allowable species had homolytic BDEs ranging from high (deactivated) to very low (activated), in the case of species (b) the BDE was at a level well below that of vitamin E, making it an excellent and potentially potent antioxidant. DFT calculations revealed that the histidine-Cu(I) complex had a comparable BDE to that of Trolox, again demonstrating how interactions between chemical constituents can influence, and in this case enhance antioxidant activity measurements. Synergies and antagonisms were also reported for eight classes of chemical constituents typically found in navel oranges. These mixtures were prepared based on the levels reported in nutritional data tables, and analyzed by ORAC and CAA-RBC assays. A correlation analysis revealed that the ORAC and CAA-RBC data did not correlate overall, however distinct clustering and several interesting outliers were noted. Cluster (a) had low ORAC and low CAA-RBC values, involving combinations of preservatives, sugars and CuNPs. Cluster (b) had low to moderate responses in both assays, and was made up primarily of vitamins in combination with CuNPs, preservatives, sugars and flavonoids. Cluster (c) was dominated by phenolics and their interactions with a number of groups, which gave high antioxidant activity in both ORAC and CAA-RBC assays, and amino acids are the main contributors in cluster (d). Organic acids featured in both outliers, firstly with a high antioxidant activity in both assays when combined with polyphenolics, and secondly as having an auto-oxidation effect in the CAA-RBC assay but a high ORAC value when analysed individually. Antioxidant activities of individual mixtures and combinations of classes of compounds showed antagonism/suppression of antioxidant activity between sugars and vitamins, and between polyphenolics and flavonoids in the ORAC assay. However, these same solutions resulted in antioxidant synergy in the CAA-RBC assay. In fact, the auto-oxidation effect of organic acids was reversed and synergies were noted in interaction with polyphenolics. A number of synergisms ex vivo involved polyphenolics in combination with other constituents such as vitamins, the amino acid Tryptophan, preservatives and CuNPs. These findings support the postulate that interactions at the “substrate zone” are influencing factors of antioxidant capacity at the molecular level. Computational chemistry was used to postulate mechanisms for antioxidant synergy, activation and deactivation of phenolic O-H groups, using quercetin and (-)-epicatechin-3-gallate as examples. It was concluded that factors including rainfall, amino acid and CuNPs addition, and interactions between common classes of food constituents influenced antioxidant activity in food systems. Computational chemical calculations were used to postulate mechanisms for antioxidant enhancement and synergy, a major influencing factor in antioxidant measurements. This research describes the potential for unlocking new and powerful antioxidant synergies in food systems, nutrition and health and the medical/pharmaceutical fields.
APA, Harvard, Vancouver, ISO, and other styles
11

Lin, Yu-Chang, and 林育昌. "Solution-Processable Copper Nanoparticles for Plasmonic-Enhanced Perovskite Solar Cells." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/7936fa.

Full text
Abstract:
碩士
國立交通大學
光電工程研究所
107
In this thesis, we synthesize stable copper nanoparticles (CuNPs) in aqueous media and incorporated into perovskite solar cells (PrSCs) for triggering localized surface plasmon resonance (LSPR) to improve their device performance. The CuNPs exhibit very similar plasmonic properties but had much less cost than conventional NPs made of noble metals, such as gold and silver. The CuNPs were positioned between the anode buffer layer, poly(3,4-ethyelenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and the active material (MA0.85Cs0.15PbI3) of the PrSCs. The device results indicated that the light concentrating behavior was imposed after we had incorporated CuNPs in the device. The stability test also indicated that the device lifetime was not significantly affected after the incorporation of the CuNPs. We attributed such device improvement in device performance to the LSPR induced by the nanoparticles. Our results suggest that the CuNPs appear to be a promising low-cost alternative metal NPs for use in plasmonic-enhanced solar cells.
APA, Harvard, Vancouver, ISO, and other styles
12

Dadgostar, Nafiseh. "Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid System." Thesis, 2008. http://hdl.handle.net/10012/4005.

Full text
Abstract:
Synthesis of copper nanoparticles by a colloidal recipe in a two-phase liquid-liquid mixture (toluene/water) was investigated. The synthesis recipe used in this work was originally applied for the fabrication of alkylamine-capped gold nanoparticles. This method involves transferring metal cations from the aqueous layer to the organic one by the phase transfer reagent, tetraoctylammonium bromide, followed by reduction with sodium borohydride in the presence of oleylamine, which was used as the stabilising ligand. Several modifications were made to the original recipe to produce copper nanoparticles with high degrees of purity and stability. These particles are potentially applicable in various industries and are considered as an alternative for expensive metal nanoparticles, such as gold, silver, and platinum. Due to the high tendency of copper for oxidation, all of the synthesis experiments were carried out in a glove box under the flow of an inert gas (N2 or Ar). The concentration of Cl− was initially increased to form anionic complexes of copper that could later react with the cationic phase transfer reagent. This modification was followed to enhance the efficiency of the transferring step; however, the presence of anion, Cl−, at the surface of the synthesized particles was reported to change their properties; thus, increasing chloride concentration was eventually ignored. The decanting of two phases prior to the reduction step was also investigated to examine whether the site of the reduction reaction could be limited to cores of reverse micelles. The aggregated nanoparticles, which were fabricated by reducing the decanted organic phase, were heated after the synthesis at 150°C for 30 minutes to obtain a light green solution of nanoparticles. However, further characterization was not possible due to the hydrocarbon impurities. Dodecane, which was employed as the solvent for post-synthesis heating procedure, is believed to result in these impurities. Further investigation is required to explain the mechanism by which post-synthesis heating facilitates nanoparticle stabilization. Duplication of the original recipe for copper in an inert atmosphere resulted in a mixture of assembled layers of separated copper nanocrystals with an average size of ~ 5 nm and aggregated clusters of cubic copper (I) oxide nanoparticles. The possible mechanism for this division is believed to be the presence of the phase transfer reagent capped to the surface of a portion of synthesized particles leading to their metastability.
APA, Harvard, Vancouver, ISO, and other styles
13

Ivan, Jebakumar D. S. "Solution-Processed Optoelectronic Devices Based on Colloidal Semiconductor Nanostructures for Photodetection." Thesis, 2015. http://etd.iisc.ernet.in/2005/3672.

Full text
Abstract:
Miniaturisation of electronic and optoelectronic devices have enabled the realization of system-on-a-chip technology in modern image sensors, where the photo sensor arrays and the corresponding signal processing circuitry are monolithically integrated in a single chip. Apart from intrinsic advantages, the drive towards miniaturisation has been further fuelled by the exotic properties exhibited by semiconductor materials at the nano scale. As the dimension of the material is gradually reduced from the bulk, interesting physical and chemical properties begin to emerge owing to the increased confinement of charge carriers in different spatial dimensions. Solution-processed optoelectronics have revolutionised the field of device physics over recent years due to the superior performance, ease of processing, substrate flexibility, cost-effective production of large-area devices and other advantages associated with the technique. In the present work, solution-processed photo detectors have been fabricated on SiO2/Si substrate facilitating the ease of integration with conventional silicon CMOS technology. The present thesis deals with the successful exploitation of most common point defects in semiconductor nanostructures to reduce the overlap of hole wave function with the envelop wave function of the ground state electron to improve photoconduction. As a result of the investigation process, successful strategies have been devised for the improvement of photoconduction by engineering the defect states. In the first study, the intrinsic copper vacancies and the capping agent thiol have been employed to trap photo holes in photo detectors based on copper indium selenide nanoparticles, thereby allowing the photoelectrons to transit the device. In the second study, the optical excitation of charge carriers into the defect-related band originating from oxygen vacancies further raises the photoconductivity of molybdenum trioxide nanobelts based photodetectors. In the third study, the absence of photoconductivity in zinc selenide based quantum dots has been attributed to the radiative recombination of photogenerated carriers at the donor-acceptor states caused by the self-compensation of point defects in the dots. In the final study, the crucial role of the energy depth of trap states in determining the carrier relaxation dynamics (temporal response) of the photodetector based on SnO2 nanowires has been discussed in detail. .
APA, Harvard, Vancouver, ISO, and other styles
14

Chandra, Manabendra. "Probing The Origin Of Second Harmonic Generation From Copper Nanoparticles In Solution By Hyper-Rayleigh Scattering." Thesis, 2008. http://hdl.handle.net/2005/814.

Full text
Abstract:
In recent years, coinage metal nanoparticles have emerged as materials with largest quadratic optical nonlinearity. Their first hyperpolarizabilities (β) are very high (105-106 x 10-30 esu) but such large values were quite unexpected because of their apparently centrosymmetric bulk structure. Only a small second harmonic generation (SHG) from coinage metal nanoparticles is expected through higher order multipolar (e.g., quadrupolar) polarization mechanisms. Various possible reasons have been attributed to the observation of large β values in coinage metal nanoparticles. They are: 1) Particles may not be overall centrosymmetric (as appears from the TEM pictures) which, in turn, can make SHG electric dipole allowed, 2) Several polarization mechanisms (dipolar, quadrupolar, retardation, etc.) may be operating simultaneously to render SHG very efficient, 3) SHG can be resonance enhanced if the incident or SH photons fall within the surface plasmon resonance (SPR) absorption bands or higher energy interband transitions in the metal particles, and 4) Surface capping agents used for stabilization of the nanoparticles in solution alter the SH response. It is, therefore, important to experimentally find out which of the above mentioned possibilities are dominant and under what conditions we can identify the contribution of various mechanisms to the overall SHG response of the coinage metal nanoparticles. In this thesis work, the origin of SHG from copper (one of the coinage metals) nanoparticles has been investigated using hyper-Rayleigh scattering (HRS). In chapter 1, an introduction to metal nanoparticles and their optical properties have been presented. A general introduction to second order nonlinear optics and various methods for the determination of first hyperpolarizability are provided. A literature survey on the second order NLO properties of metal nanoparticles is also done. At the end of the chapter, the motivation of the work done is outlined. In chapter 2, the experimental set-ups for unpolarized and polarization resolved hyper-Rayleigh scattering (HRS) measurements at different wavelengths are described. Generation of IR wavelength of 1543 and 1907 nm using stimulated Raman scattering in gases have been presented in this chapter. In chapter 3, synthesis and characterization of copper nanoparticles are described. Four different size copper nanoparticles (5, 9, 25, and 55 nm) were prepared by laser ablation. Size dependencies of first hyperpolarizability were investigated at different wavelengths and it was found that β increases with increasing size of the particle and that the SHG originates mainly from the surface of the particle. Dispersion in first hyperpolarizabilities of the copper nanoparticles has also been investigated and we find that at incident and SH wavelengths far from the SPR absorption band, the hyperpolarizability is large compared to molecular hyperpolarizabilities. In chapter 4, the results of polarization resolved HRS measurements on copper nanoparticles of five different sizes at four different wavelengths (738, 1064, 1543 and 1907 nm) are reported. Polarization analyses show that at small particle size to wavelength (d/λ) ratio the dipolar contribution to SHG is dominant whereas the quadrupolar and retardation effects become important at larger d/λ values. The “small particle limit” in the SHG from coinage metal nanoparticles has been assessed based on our results on copper and others’ results on silver and gold nanoparticles. In chapter 5, the effect of surface capping on the first hyperpolarizability of copper nanoparticles is investigated. Polyvinyl pyrrolidone (PVP) has been used as a capping agent. The results obtained for bare and capped copper nanoparticles show that capping enhances the hyperpolarizability by a factor of 2. In the last chapter 6, general conclusions drawn on SHG from coinage metal nanoparticles based on this work are presented along with future perspectives.
APA, Harvard, Vancouver, ISO, and other styles
15

Kalenga, Pierre Mubiayi. "Synthesis and characterization of copper chalcogenide nanoparticles and their use in solution processed photovoltaics." Thesis, 2015. http://hdl.handle.net/10539/19309.

Full text
Abstract:
A Thesis submitted to the Faculty of Science, School of Chemistry at University of the Witwatersrand, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015.
Photovoltaic cells offer a good alternative to the fossil fuels. Several approaches are being analysed in order to have solar cells that are capable to conquer the energy market all around the world. Quantum dots (QDs) have already proven features that can be taken into account to improve the properties of solar cells. Metal selenide nanoparticles (NPs) possess semiconducting behaviours that can vary with their structural and optical properties evolving from their synthesis. The reaction parameters such as the method, time, solvent and precursors can affect the growth and nucleation of particles and thus impose on the properties of the synthesized materials. The performance of solar cells made of the synthesized metal selenides will then be dependent upon the properties of the NPs used as active layer. Furthermore, the electrical current generation also depends on the structure of the deposited active layer and its interface with other films to be assembled for the device. The binary copper selenide, ternary copper indium selenide (CISe), quaternary copper indium gallium selenide (CIGSe) and quinary copper zinc tin sulphur selenide (CZTSSe) NPs were synthesized via conventional colloidal method (CCM) and microwave assisted method (MAM). The MAM has a particular interest as it is less time consuming and can easily be a large scale synthesis. Photovoltaic devices were fabricated from the synthesized materials as proof of concept for photovoltaic activities. The CCM was used to optimize various parameters for the synthesis of each type of the chalcogenide materials as this is easily controllable than the ones from the sealed vessel from MAM. The dependency of properties of all copper chalcogenide NPs on the time, precursor concentration, temperature and solvent of synthesis have been demonstrated via various characterization techniques including ultraviolet-visible-near infrared spectroscopy, photoluminescence spectroscopy, X-ray diffractometry and transmission electron microscopy. The binary copper selenide was first synthesized and considered as a template for evaluation of the use of copper chalcogenide materials in solar cells. Relatively smaller copper selenide NPs with average sizes of 4.5 and 6.0 nm were obtained from conventional colloidal and microwave assisted methods respectively. The sample yielded from the microwave assisted method possessed less polydispersed NPs. The later had better crystallinity in which prevailed a single cubic Cu2Se phase. To the best of our knowledge this is the first evidence of defined shapes and nearly single phase of small sized copper selenide NPs synthesized by mean of the MAM. The copper selenide particles synthesized via this method were used to fabricate a Schottky device. The conditions of copper selenide synthesis were optimized to 250 oC, 30 min of CCM synthesis using oleylamine (OLA) and a Cu/Se ratio of 1:1. Nearly hexagonal facets with blue-shifted absorption band edge of monodispersed NPs sizing 4-8 nm in diameter were obtained. The synthesized copper selenide showed better crystallinity with a single cubic Cu2Se phase. A Schottky device using MAM synthesized copper selenide NPs as the semiconducting layer was fabricated at room temperature. The diode effect was demonstrated with the electrical parameters such as the ideality factor, barrier height and the series resistances extracted from the experimental current-voltage data using the thermionic theory and Cheung’s modification. The thermionic theory resulted in the ideality factor of 4.35 and the barrier height of 0.895 eV whilst the Cheung’s method resulted in the ideality factor, barrier height and series resistance of 1.04, 2.59 10-3 eV and 0.870 Ω respectively. The ternary copper indium selenide NPs showed that the MAM allowed the formation of copper rich NPs alongside secondary products. The synthesis of the ternary sample via CCM was optimized using uncapped precursors (no TOP was added) in OLA at 220 oC for 30 min. The synthesized CuInSe2 NPs possessed a large blue-shift in their absorption band edges and emission peaks. The nearly stoichiometric CuInSe2 particles with diameter sizes of 5-9 nm were found in tetragonal crystalline orientation. The cyclic voltametry (CV) and the absorption spectra showed a large blue-shifted energy gap, about 0.95 eV, an increase from the bulk, proving the quantum confinement effects of synthesized copper indium selenide quantum dots. The CuInSe2 NPs were thus used as absorbing materials in the quantum dot sensitized solar cell devices (QDSSCs). The QDSSC devices were assembled via treatment of the titanium oxide, quantum dot layers and their interface. This was done by the treatment of copper indium selenide surface with mercapto-propionic acid (MPA) and ethanedithiol (EDT) during the deposition of the quantum dots onto TiO2 films. The MPA treatment did not reveal positive effects on copper indium selenide thin film and the assembled device under our optimized working conditions. However the use of EDT allowed the improvement of electron transport. The short circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) obtained from the current-voltage (J-V) curves reached the values of 324 μA cm-2, 487 mV and 43% respectively, indicating that the investigated quantum dots possess electrical properties. For the quaternary copper indium gallium selenide, relatively small sized NPs were synthesized via CCM and MAM. The CCM synthesized CIGSe NPs were less agglomerated with a shorter tailing in absorption than those from MAM. The stoichiometric CuIn0.75Ga0.25Se2 showed less agglomerated and highly crystalline particles with a large blueshifted absorption band edge and a smaller full width at halth maximum (FWHM) of the emission peak compared to CuIn0.5Ga0.5Se2 and CuIn0.25Ga0.75Se2. The use of OLA as solvent of synthesis improved the growth and dispersivity of copper indium gallium selenide NPs. The particles with a large blue-shifted absorption band edge, a lattice of tetragonal phase, more monodispersed CIGSe and possessing an average size of 6.5 nm were obtained from CCM synthesis using OLA. The OLA as-synthesized CIGSe NPs were used in thin film for the assembly of QDSSC. The device exhibited electrical properties with the Jsc, Voc and FF of 168 μA cm-2, 162 mV and 33% respectively. The overall device performance was poor but may further be improved for further photovoltaic application. The quinary CZTSSe NPs possessed large blue-shifted absorption band edges of 450-460 nm than the bulk material (827 nm). The emission peak at 532 nm and similar FWHM of less than 50 nm were observed in samples from both CCM and MAM. More monodispersed crystals were obtained with both methods whilst the average particle sizes of 10 and 9 nm were yielded from MAM and CCM respectively. The nanoparticles crystallized in tetragonal lattices between copper zinc tin sulphide and copper zinc tin selenide crystals. However, the MAM gave more crystalline phases. The CV and the absorption spectra showed a blue shifted energy gap, about 0.21 eV increase from the buk which is located at 1.51 eV. This is indicative of the quantum confinement effects of synthesized NPs. The evidence of electrical properties was also shown in the QDSSCs fabricated using the MAM synthesized quinary QDs. This was done following the same treatments as for copper indium selenide devices. The Jsc, Voc and FF were found at the maxima of 258 μA cm-2, 395 mV and 38% respectively. The MPA and EDT treatments did not improve the device performance under our working conditions. Nevertheless, the electrical properties observed in the assembled device were indicative of promising efficient solar cells from synthesized CZTSSe NPs.
APA, Harvard, Vancouver, ISO, and other styles
16

Kalenga, Mubiayi Pierre. "Synthesis and characterization of copper chalcogenide nanoparticles and their use in solution processed photovoltaics." Thesis, 2015. http://hdl.handle.net/10539/18524.

Full text
Abstract:
A Thesis submitted to the Faculty of Science, School of Chemistry at University of the Witwatersrand, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg 2015
Photovoltaic cells offer a good alternative to the fossil fuels. Several approaches are being analysed in order to have solar cells that are capable to conquer the energy market all around the world. Quantum dots (QDs) have already proven features that can be taken into account to improve the properties of solar cells. Metal selenide nanoparticles (NPs) possess semiconducting behaviours that can vary with their structural and optical properties evolving from their synthesis. The reaction parameters such as the method, time, solvent and precursors can affect the growth and nucleation of particles and thus impose on the properties of the synthesized materials. The performance of solar cells made of the synthesized metal selenides will then be dependent upon the properties of the NPs used as active layer. Furthermore, the electrical current generation also depends on the structure of the deposited active layer and its interface with other films to be assembled for the device. The binary copper selenide, ternary copper indium selenide (CISe), quaternary copper indium gallium selenide (CIGSe) and quinary copper zinc tin sulphur selenide (CZTSSe) NPs were synthesized via conventional colloidal method (CCM) and microwave assisted method (MAM). The MAM has a particular interest as it is less time consuming and can easily be a large scale synthesis. Photovoltaic devices were fabricated from the synthesized materials as proof of concept for photovoltaic activities. The CCM was used to optimize various parameters for the synthesis of each type of the chalcogenide materials as this is easily controllable than the ones from the sealed vessel from MAM. The dependency of properties of all copper chalcogenide NPs on the time, precursor concentration, temperature and solvent of synthesis have been demonstrated via various characterization techniques including ultraviolet-visible-near infrared spectroscopy, photoluminescence spectroscopy, X-ray diffractometry and transmission electron microscopy. The binary copper selenide was first synthesized and considered as a template for evaluation of the use of copper chalcogenide materials in solar cells. Relatively smaller copper selenide NPs with average sizes of 4.5 and 6.0 nm were obtained from conventional colloidal and microwave assisted methods respectively. The sample yielded from the microwave assisted method possessed less polydispersed NPs. The later had better crystallinity in which prevailed a single cubic Cu2Se phase. To the best of our knowledge this is the first evidence of defined shapes and nearly single phase of small sized copper selenide NPs synthesized by mean of the MAM. The copper selenide particles synthesized via this method were used to fabricate a Schottky device. The conditions of copper selenide synthesis were optimized to 250 oC, 30 iii min of CCM synthesis using oleylamine (OLA) and a Cu/Se ratio of 1:1. Nearly hexagonal facets with blue-shifted absorption band edge of monodispersed NPs sizing 4-8 nm in diameter were obtained. The synthesized copper selenide showed better crystallinity with a single cubic Cu2Se phase. A Schottky device using MAM synthesized copper selenide NPs as the semiconducting layer was fabricated at room temperature. The diode effect was demonstrated with the electrical parameters such as the ideality factor, barrier height and the series resistances extracted from the experimental current-voltage data using the thermionic theory and Cheung’s modification. The thermionic theory resulted in the ideality factor of 4.35 and the barrier height of 0.895 eV whilst the Cheung’s method resulted in the ideality factor, barrier height and series resistance of 1.04, 2.59 10-3 eV and 0.870 Ω respectively. The ternary copper indium selenide NPs showed that the MAM allowed the formation of copper rich NPs alongside secondary products. The synthesis of the ternary sample via CCM was optimized using uncapped precursors (no TOP was added) in OLA at 220 oC for 30 min. The synthesized CuInSe2 NPs possessed a large blue-shift in their absorption band edges and emission peaks. The nearly stoichiometric CuInSe2 particles with diameter sizes of 5-9 nm were found in tetragonal crystalline orientation. The cyclic voltametry (CV) and the absorption spectra showed a large blue-shifted energy gap, about 0.95 eV, an increase from the bulk, proving the quantum confinement effects of synthesized copper indium selenide quantum dots. The CuInSe2 NPs were thus used as absorbing materials in the quantum dot sensitized solar cell devices (QDSSCs). The QDSSC devices were assembled via treatment of the titanium oxide, quantum dot layers and their interface. This was done by the treatment of copper indium selenide surface with mercapto-propionic acid (MPA) and ethanedithiol (EDT) during the deposition of the quantum dots onto TiO2 films. The MPA treatment did not reveal positive effects on copper indium selenide thin film and the assembled device under our optimized working conditions. However the use of EDT allowed the improvement of electron transport. The short circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) obtained from the current-voltage (J-V) curves reached the values of 324 μA cm-2, 487 mV and 43% respectively, indicating that the investigated quantum dots possess electrical properties. For the quaternary copper indium gallium selenide, relatively small sized NPs were synthesized via CCM and MAM. The CCM synthesized CIGSe NPs were less agglomerated iv with a shorter tailing in absorption than those from MAM. The stoichiometric CuIn0.75Ga0.25Se2 showed less agglomerated and highly crystalline particles with a large blueshifted absorption band edge and a smaller full width at halth maximum (FWHM) of the emission peak compared to CuIn0.5Ga0.5Se2 and CuIn0.25Ga0.75Se2. The use of OLA as solvent of synthesis improved the growth and dispersivity of copper indium gallium selenide NPs. The particles with a large blue-shifted absorption band edge, a lattice of tetragonal phase, more monodispersed CIGSe and possessing an average size of 6.5 nm were obtained from CCM synthesis using OLA. The OLA as-synthesized CIGSe NPs were used in thin film for the assembly of QDSSC. The device exhibited electrical properties with the Jsc, Voc and FF of 168 μA cm-2, 162 mV and 33% respectively. The overall device performance was poor but may further be improved for further photovoltaic application. The quinary CZTSSe NPs possessed large blue-shifted absorption band edges of 450-460 nm than the bulk material (827 nm). The emission peak at 532 nm and similar FWHM of less than 50 nm were observed in samples from both CCM and MAM. More monodispersed crystals were obtained with both methods whilst the average particle sizes of 10 and 9 nm were yielded from MAM and CCM respectively. The nanoparticles crystallized in tetragonal lattices between copper zinc tin sulphide and copper zinc tin selenide crystals. However, the MAM gave more crystalline phases. The CV and the absorption spectra showed a blue shifted energy gap, about 0.21 eV increase from the buk which is located at 1.51 eV. This is indicative of the quantum confinement effects of synthesized NPs. The evidence of electrical properties was also shown in the QDSSCs fabricated using the MAM synthesized quinary QDs. This was done following the same treatments as for copper indium selenide devices. The Jsc, Voc and FF were found at the maxima of 258 μA cm-2, 395 mV and 38% respectively. The MPA and EDT treatments did not improve the device performance under our working conditions. Nevertheless, the electrical properties observed in the assembled device were indicative of promising efficient solar cells from synthesized CZTSSe NPs.
APA, Harvard, Vancouver, ISO, and other styles
17

Ya-HsinHuang and 黃雅歆. "Synthesis of Copper Nanocubes and the Shape Control of Lead Sulfide Nanoparticles in Aqueous Solution." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3fqgn4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lin, Kai-Hung, and 林凱鴻. "Silver Nanoparticles-Modified Infrared Chemical Sensor for Selective Detection of Copper Ions in Aqueous Solution Utilizing the Surface Enhancement Effect." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/52713324578865461985.

Full text
Abstract:
碩士
國立中興大學
化學系所
95
Based on the effect of surface enhancement, an evanescent wave infrared (IR) sensor was developed and applied in detection of copper ions in aqueous solution. To facilitate the application of surface enhancement effect, IR sensing element of germanium (Ge) was first treated with silver nanoparticles (AgNPs) through an electroless displacement method. With proper reaction conditions, a thin layer of silver nanoparticles in diameter around 100 nm was successfully prepared directly on the sensing element. By probing with organic molecules on the prepared AgNPs/Ge substrates, an enhancement factor of ca. 50 was observed. Due to the lacking of vibration energy of copper ions, the AgNPs modified IR sensing element was further treated with a thin layer of chemisorbed p-mercaptopyridine (pMP) to trigger the analytical signals through a band-shifting technique. pMP can interact selectively with copper ions and consequence, its IR absorption bands were shifted to lower or higher wavenumbers depending on the weaken or strengthen the chemical bonds of pMP after chelating with copper ions. Hence, derivative-shapes of absorption bands were observed and can be used for quantitative purpose. The durability of the developed IR sensor was studied by experiencing the prepared sensor in aqueous solution with different pHs. Results indicated that the prepared sensor exhibit different stabilities in different pHs and was not workable in basic solutions. To characterize the IR sensor, several parameters in quantitative analysis were examined including the influence of solution pH, the effect of interference species, the speed in detection, the detection limit and linear range in detection. Results indicated that the prepared IR senors were highly selective for the detection of copper ions. Meanwhile, the detection speed was fast and optimal signals were obtained within few seconds. Based on three times of noise level, the obtained detection limit for copper ions was ca. 0.2 μM. The linear range in detection was short and up to 10 μM only.
APA, Harvard, Vancouver, ISO, and other styles
19

Lam, Chi-Cuong, and 林志强. "Transformation of CuO nanoparticles by ions in the solution and their effects on copper toxicity and bioaccumulation in zebrafish embryo." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3r6fp8.

Full text
Abstract:
碩士
國立交通大學
環境工程系所
107
With the rapid development of nanotechnology in the last few decades, there have been increasing concerns over the impact of nanoparticles (NPs) to human health, when they are released into aquatic environment, especially for copper oxide NPs (CuO NPs). CuO NPs is one of the common NPs, which is widely used in many industrial and agricultural applications. Once CuO NPs are released into the aquatic environment, the transformation of CuO NPs (i.e., hydrodynamic size and solubility) may occur, leading to change in their toxicity. Apart from the pH and natural organic matter (NOM), ion concentrations (i.e., ionic strength) is one of the typical parameters that directly affect the fate and transport of CuO NPs in aquatic environment. Therefore, this study investigated transformation of CuO nanoparticles by ions in the solution and their effects on copper toxicity and bioaccumulation by monitoring the responses and uptake behaviors of zebrafish embryo. In this study, two copper sources were used, including copper nanoparticles (copper oxide nanoparticle, CuO NPs) and Cu ions. Besides, the simulated waters were prepared according to the ionic strength (IS) of surface water (SW), groundwater (GW), and wastewater (WW), which was 1.5, 15 and 54 mM, respectively. Acute toxicity & teratogenicity and bioaccumulation of CuO NPs and Cu ion were investigated using zebrafish embryo. The results showed that SW caused the transformation of CuO NPs by reducing the hydrodynamic size and increasing the solubility, and led to the changes in toxic potential. The effect of CuO-NPs was mainly contributed to delay zebrafish hatching time and increase malformation instead of the mortality. In SW, for example, the mortality of zebrafish was 20% at the concentration of 10 mg CuO/L and only 18.7% of embryos had successful hatching. At the same concentration of CuO NPs, the rise of IS enhanced the hatched embryos (18.7%, 25.6% and 30.3% for SW, GW, and WW, respectively). Similarly, the total abnormal development of embryo was reduced by the increase of IS (48.6%, 34% and 27% for SW, GW, and WW, respectively). Furthermore, the heartbeat of larvae in SW was lowered than those obtained in GW and WW with the exposure 10 mg CuO/L (27.8 ± 2.9, 28 ± 3.4 and 28.9 ± 2.4 beats/10s). In SW, approximately 15% of larvae had the heartbeat below 25 beats/10s in the concentration of 10 mg CuO/L, while this value was only around 5% in WW. Moreover, in SW, 35% of uptake copper was found in inside zebrafish embryo. In contrast, there was only 15% in WW. Besides, the small diameter of CuO NPs in SW mainly accumulated in the heart of zebrafish larvae, whereas the big size of CuO NPs in GW and WW was found abundantly in body axis and tail. In summary, the low IS solution (e.g., SW) could drop the hydrodynamic size and raise the solubility of CuO NPs. Thereby, the toxic potential of CuO NPs was enhanced in the low IS solution. The SW not only induced the reduction of hatching rate and heartbeat but also resulted in the increase of mortality and malformation. Therefore, the release of CuO NPs into low IS solutions such as surface water or groundwater would raise many concerns about their toxicity and bioaccumulation.
APA, Harvard, Vancouver, ISO, and other styles
20

劉淑雅. "1.Aqueous Solution Synthesis of Palladium Nanocrystals with Systematic Shape Evolution and Their Facet-Dependent Catalytic Activity 2.One-Pot Synthesis of Copper Nanoparticles in Aqueous Solution." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/37547828166590597065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

(7027802), Scott A. McClary. "Synthesis and Characterization of Copper Arsenic Sulfide for Photovoltaic Applications." Thesis, 2019.

Find full text
Abstract:
Global warming poses an existential threat to humanity and is inevitable unless significant efforts are made to eliminate its root causes. The need to replace fossil fuels with renewable sources has been obvious for many years, yet the world still receives the vast majority of its energy from non-renewable reservoirs. Harnessing solar radiation is the most promising route to ensure a carbon-free energy future, as the sun is the sole source of energy that can meet humankind’s energy demands for generations to come.

The most widely recognized technology associated with the sun is a photovoltaic (PV) cell, which converts electromagnetic radiation directly into electricity that can either be used immediately or stored for later use. Silicon-based solar cells currently dominate (>90% market share) the global PV market, driven in part due to parallel research in the microelectronics industry. However, silicon is an indirect bandgap material, resulting in inflexible solar modules, and it requires high capital expenditures and high energy inputs for terawatt scale manufacturing.

The remainder of the commercial PV market consists of thin-film technologies based on Cu(In,Ga)Se2 (CIGSe) and CdTe. These materials have a direct bandgap, so they can be used in flexible applications, and they are readily scalable due to their amenability to low-cost, roll-to-roll manufacturing. The power conversion efficiencies of CIGSe and CdTe cells have exceeded 20% and are nearing those of silicon cells, but concerns over the long-term supply of indium and tellurium cast doubt on whether these materials can be deployed at large scales. Alternative materials, such as Cu2ZnSnS4-xSex (CZTSSe), have been researched for many years; the allure of a material with earth abundant elements and properties similar to CIGSe and CdTe was quite enticing. However, recent work suggests that CZTSSe is fundamentally limited by the formation of defects and band tails in the bulk material, and the efficiencies of CZTSSe-based devices have been saturated since 2013.

New materials for the PV market must meet several criteria, including constituent earth abundant elements, outstanding optoelectronic properties, and low propensity for defect formation. In this regard, the copper-arsenic-sulfur family of materials is an attractive candidate for PV applications. Cu, As, and S are all earth abundant elements with sufficiently different ionic radii, suggesting high defect formation energies. In addition, previous computational work has suggested that several ternary phases, most notably enargite Cu3AsS4, have appropriate bandgaps, high absorption coefficients, and high predicted efficiencies in a thin-film PV device. The system must be investigated experimentally, with attention not only paid to synthesis and device performance, but also to characteristics that give clues as to whether high efficiencies are achievable.

This dissertation studies the Cu-As-S system in the context of thin-film photovoltaics, with an emphasis on Cu3AsS4 and detours to related materials discussed when appropriate. The first synthesis of Cu3AsS4 thin-films is reported using solution-processed nanoparticles as precursors. Initial device efficiencies reach 0.18%, which are further boosted to 0.35% through optimization of the annealing procedure. Several limitations to the initial approach are identified (most notably the presence of a carbonaceous secondary phase) and addressed through post-processing treatments and ligand exchange. Cu3AsS4 is also rigorously characterized using a suite of optoelectronic techniques which demonstrate favorable defect characteristics that motivate continued research. The current limitations to Cu3AsS4 performance stem from improper device architecture rather than material properties. Further development of Cu-As-S thin films must focus on identifying and fabricating ideal device architectures in parallel with continued improvements to film fabrication.

This dissertation ultimately demonstrates high promise for Cu3AsS4 as a thin-film PV material. It also may serve as an example for other researchers studying new materials, as the examination of fundamental optoelectronic properties early in the material’s development phase is key to ensure that limited scientific resources are invested into the compounds with the highest potential impact on society.
APA, Harvard, Vancouver, ISO, and other styles
22

Ghane, Parvin. "Fabrication and analysis of CIGS nanoparticle-based thin film solar cells." 2013. http://hdl.handle.net/1805/3697.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Fabrication and analysis of Copper Indium Gallium di-Selenide (CIGS) nanoparticles-based thin film solar cells are presented and discussed. This work explores non-traditional fabrication processes, such as spray-coating for the low-cost and highly-scalable production of CIGS-based solar cells. CIGS nanoparticles were synthesized and analyzed, thin CIGS films were spray-deposited using nanoparticle inks, and resulting films were used in low-cost fabrication of a set of CIGS solar cell devices. This synthesis method utilizes a chemical colloidal process resulting in the formation of nanoparticles with tunable band gap and size. Based on theoretical and experimental studies, 100 nm nanoparticles with an associated band gap of 1.33 eV were selected to achieve the desired film characteristics and device performances. Scanning electron microcopy (SEM) and size measurement instruments (Zetasizer) were used to study the size and shape of the nanoparticles. Electron dispersive spectroscopy (EDS) results confirmed the presence of the four elements, Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se) in the synthesized nanoparticles, while X-ray diffraction (XRD) results confirmed the tetragonal chalcopyrite crystal structure. The ultraviolet-visible-near infra-red (UV-Vis-NIR) spectrophotometry results of the nanoparticles depicted light absorbance characteristics with good overlap against the solar irradiance spectrum. The depositions of the nanoparticles were performed using spray-coating techniques. Nanoparticle ink dispersed in ethanol was sprayed using a simple airbrush tool. The thicknesses of the deposited films were controlled through variations in the deposition steps, substrate to spray-nozzle distance, size of the nozzle, and air pressure. Surface features and topology of the spray-deposited films were analyzed using atomic force microscopy (AFM). The deposited films were observed to be relatively uniform with a minimum thickness of 400 nm. Post-annealing of the films at various temperatures was studied for the photoelectric performance of the deposited films. Current density and voltage (J/V) characteristics were measured under light illumination after annealing at different temperatures. It was observed that the highest photoelectric effect resulted in annealing temperatures of 150-250 degree centigrade under air atmosphere. The developed CIGS films were implemented in solar cell devices that included Cadmium Sulfide (CdS) and Zinc Oxide (ZnO) layers. The CdS film served as the n-type layer to form a pn junction with the p-type CIGS layer. In a typical device, a 300 nm CdS layer was deposited through chemical bath deposition on a 1 $mu$m thick CIGS film. A thin layer of intrinsic ZnO was spray coated on the CdS film to prevent shorting with the top conductor layer, 1.5 μm spray-deposited aluminum doped ZnO layer. A set of fabricated devices were tested using a Keithley semiconductor characterization instrument and micromanipulator probe station. The highest measured device efficiency was 1.49%. The considered solar cell devices were simulated in ADEPT 2.0 solar cell simulator based on the given fabrication and experimental parameters. The simulation module developed was successfully calibrated with the experimental results. This module can be used for future development of the given work.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography