Journal articles on the topic 'Copper Precursors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Copper Precursors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Jiabao, Jie Ren, Shuang Li, Mingyu Li, and Qingxuan Zeng. "Study on the Effect of Nanoporous Copper Particle Size on Copper-Based Azide." Micromachines 15, no. 4 (2024): 462. http://dx.doi.org/10.3390/mi15040462.
Full textBaco-Carles, Valérie, Lucien Datas, and Philippe Tailhades. "Copper Nanoparticles Prepared from Oxalic Precursors." ISRN Nanotechnology 2011 (September 8, 2011): 1–7. http://dx.doi.org/10.5402/2011/729594.
Full textKlęba, Joanna, Kun Zheng, Dorota Duraczyńska, Mateusz Marzec, Monika Fedyna, and Jakub Mokrzycki. "Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors." Materials 18, no. 3 (2025): 676. https://doi.org/10.3390/ma18030676.
Full textAhmad, Rahnama, Gharagozlou Mehrnaz, and Reza Gardeshzadeh Amir. "Comparative study of copper precursors for synthesis of CuO nanoparticles by ultrasonic-assisted thermal decomposition method." Journal of Indian Chemical Society Vol. 90, Mar 2013 (2013): 271–77. https://doi.org/10.5281/zenodo.5768033.
Full textNorman, John A., Melanie Perez, Xinjian Lei, and Hansong Cheng. "New Precursors for Copper ALD." ECS Transactions 3, no. 15 (2019): 161–70. http://dx.doi.org/10.1149/1.2721485.
Full textAndal, V., and G. Buvaneswari. "Synthesis of Nano CuO by Polymeric Precursor Method and its Low Temperature Reduction to Stable Copper Nanoparticles." Journal of Nano Research 15 (September 2011): 11–20. http://dx.doi.org/10.4028/www.scientific.net/jnanor.15.11.
Full textPeter Etape, Ekane, Lambi John Ngolui, Josepha Foba-Tendo, Divine Mbom Yufanyi, and Beckley Victorine Namondo. "Synthesis and Characterization of CuO, TiO2, and CuO-TiO2 Mixed Oxide by a Modified Oxalate Route." Journal of Applied Chemistry 2017 (June 4, 2017): 1–10. http://dx.doi.org/10.1155/2017/4518654.
Full textShabanov, Nabi S., Kamil Sh Rabadanov, Sagim I. Suleymanov, et al. "Water-Soluble Copper Ink for the Inkjet Fabrication of Flexible Electronic Components." Materials 14, no. 9 (2021): 2218. http://dx.doi.org/10.3390/ma14092218.
Full textLaine, Richard M., Kay A. Youngdahl, Richard A. Kennish, Martin L. Hoppe, Zhi-Fan Zhang, and Jean Ray. "Superconducting fibers from organometallic precursors. Part II: Chemistry and low temperature processing1." Journal of Materials Research 6, no. 5 (1991): 895–907. http://dx.doi.org/10.1557/jmr.1991.0895.
Full textSala, Leo, Iwona B. Szymańska, Céline Dablemont, Anne Lafosse, and Lionel Amiaud. "Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)." Beilstein Journal of Nanotechnology 9 (January 5, 2018): 57–65. http://dx.doi.org/10.3762/bjnano.9.8.
Full textPousaneh, Elaheh, Marcus Korb, Volodymyr Dzhagan та ін. "β-Ketoiminato-based copper(ii) complexes as CVD precursors for copper and copper oxide layer formation". Dalton Transactions 47, № 30 (2018): 10002–16. http://dx.doi.org/10.1039/c8dt01647j.
Full textWang, Zhen Dong, Zhen Quan Lai, and Guo Rong Chen. "Synthesis and Characterization of CuInS2 and CuInSe2 Compounds by Vacuum Sintering Method." Advanced Materials Research 304 (July 2011): 119–23. http://dx.doi.org/10.4028/www.scientific.net/amr.304.119.
Full textSun, Pan Pan, Shu Zhong Wang, Yan Hui Li, and Tuo Zhang. "Supercritical Hydrothermal Synthesis of Ultra-Fine Copper Particles Using Different Precursors." Key Engineering Materials 744 (July 2017): 493–97. http://dx.doi.org/10.4028/www.scientific.net/kem.744.493.
Full textNorman, John A. T., Melanie Perez, Stefan E. Schulz, and Thomas Waechtler. "New precursors for CVD copper metallization." Microelectronic Engineering 85, no. 10 (2008): 2159–63. http://dx.doi.org/10.1016/j.mee.2008.05.036.
Full textBartholazzi, Gabriel, M. M. Shehata, Daniel H. Macdonald, and Lachlan E. Black. "Atomic layer deposition of Cu2O using copper acetylacetonate." Journal of Vacuum Science & Technology A 41, no. 2 (2023): 022402. http://dx.doi.org/10.1116/6.0002238.
Full textLi, Jie, Nana Yu, and Haoran Geng. "Nanostructured copper/copper oxide hybrids: combined experimental and theoretical studies." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21562–72. http://dx.doi.org/10.1039/c6cp03096c.
Full textWang, Jian, and Jie Zhu. "Phase Evolutions in the Metallic Precursors of the Ternary Copper-Indium-Gallium System." Advanced Materials Research 774-776 (September 2013): 974–80. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.974.
Full textHanisha R, Hanisha R., Udayakumar R. Udayakumar R, Selvayogesh S. Selvayogesh S, Keerthivasan P. Keerthivasan P, and Gnanasekaran R. Gnanasekaran R. "Anti Fungal Activity of Green Synthesized Copper Nanoparticles Using Plant Extract of Bryophyllum Pinnatum (Lam.) and Polyalthia Longifolia (Sonn.) R." Biosciences Biotechnology Research Asia 20, no. 1 (2023): 317–28. http://dx.doi.org/10.13005/bbra/3091.
Full textAndal, V., G. Buvaneswari, and R. Lakshmipathy. "Synthesis of CuAl2O4 Nanoparticle and Its Conversion to CuO Nanorods." Journal of Nanomaterials 2021 (September 6, 2021): 1–7. http://dx.doi.org/10.1155/2021/8082522.
Full textKumar, Ravi, Frank R. Fronczek, Andrew W. Maverick, W. Gilbert Lai, and Gregory L. Griffin. "Copper(I) precursors for chemical vapor deposition of copper metal." Chemistry of Materials 4, no. 3 (1992): 577–82. http://dx.doi.org/10.1021/cm00021a016.
Full textSingh, Amita, Manoj Trivedi, Pooja Singh, et al. "Copper(i) tertiary phosphine xanthate complexes as single source precursors for copper sulfide and their application in the OER." New Journal of Chemistry 42, no. 23 (2018): 18759–64. http://dx.doi.org/10.1039/c8nj03992e.
Full textDeng, Chong, Bowen Fu, Lili Li, Yanlai Wang, and Lin Yang. "Influence of Sulfur Precursor Solutions on Crystallinity of CuInS2 Nanocrystals Fabricated with Hot-Injection Method." Journal of Nanoscience and Nanotechnology 20, no. 7 (2020): 4533–36. http://dx.doi.org/10.1166/jnn.2020.17894.
Full textUmapathy, Chokkanathan, and Geetha Kannappan. "SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL APPLICATIONS OF A MULTIDENTATE LIGAND AND ITS COPPER (II) COMPLEXES." International Journal of Applied and Advanced Scientific Research 1, no. 2 (2017): 146–51. https://doi.org/10.5281/zenodo.322713.
Full textSzczęsny, Robert, Tuan K. A. Hoang, Liliana Dobrzańska, and Duncan H. Gregory. "Solution/Ammonolysis Syntheses of Unsupported and Silica-Supported Copper(I) Nitride Nanostructures from Oxidic Precursors." Molecules 26, no. 16 (2021): 4926. http://dx.doi.org/10.3390/molecules26164926.
Full textNORMAN, J. A. T., B. A. MURATORE, P. N. DYER, D. A. ROBERTS, and A. K. HOCHBERG. "NEW OMCVD PRECURSORS FOR SELECTIVE COPPER METALLIZATION." Le Journal de Physique IV 02, no. C2 (1991): C2–271—C2–278. http://dx.doi.org/10.1051/jp4:1991233.
Full textRoth, Nina, Alexander Jakob, Thomas Waechtler, Stefan E. Schulz, Thomas Gessner, and Heinrich Lang. "Phosphane copper(I) complexes as CVD precursors." Surface and Coatings Technology 201, no. 22-23 (2007): 9089–94. http://dx.doi.org/10.1016/j.surfcoat.2007.05.004.
Full textWright, Gareth S. A. "Bacterial Evolutionary Precursors of Eukaryotic Copper–Zinc Superoxide Dismutases." Molecular Biology and Evolution 38, no. 9 (2021): 3789–803. http://dx.doi.org/10.1093/molbev/msab157.
Full textStrassl, Florian, Alexander Hoffmann, Benjamin Grimm-Lebsanft, et al. "Fluorescent Bis(guanidine) Copper Complexes as Precursors for Hydroxylation Catalysis." Inorganics 6, no. 4 (2018): 114. http://dx.doi.org/10.3390/inorganics6040114.
Full textBlinov, A. V., А. А. Gvozdenko, A. B. Golik, et al. "Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (103) (August 2022): 95–109. http://dx.doi.org/10.18698/1812-3368-2022-4-95-109.
Full textBhattacharyya, Anik, Biswa Nath Ghosh, Santiago Herrero, Kari Rissanen, Reyes Jiménez-Aparicio, and Shouvik Chattopadhyay. "Formation of a novel ferromagnetic end-to-end cyanate bridged homochiral helical copper(ii) Schiff base complex via spontaneous symmetry breaking." Dalton Transactions 44, no. 2 (2015): 493–97. http://dx.doi.org/10.1039/c4dt03166k.
Full textYang, Wen-dong, Chun-yan Liu, Zhi-ying Zhang, Yun Liu, and Shi-dong Nie. "Copper inks formed using short carbon chain organic Cu-precursors." RSC Adv. 4, no. 104 (2014): 60144–47. http://dx.doi.org/10.1039/c4ra09318f.
Full textFelgueiras, Mariana B. S., João Restivo, Juliana P. S. Sousa, Manuel F. R. Pereira, and Olívia S. G. P. Soares. "Copper Supported on Mesoporous Structured Catalysts for NO Reduction." Catalysts 12, no. 2 (2022): 170. http://dx.doi.org/10.3390/catal12020170.
Full textPetuenju, Eric Nguwuo, and Oumarou Savadogo. "Characterization of CuInS2 Thin Films Grown by Transducer-based Ultrasonic Spray Pyrolysis for PV Solar Cells Applications." Journal of New Materials for Electrochemical Systems 19, no. 3 (2016): 169–79. http://dx.doi.org/10.14447/jnmes.v19i3.329.
Full textKügler, Merle, Julius Scholz, Andreas Kronz, and Inke Siewert. "Copper complexes as catalyst precursors in the electrochemical hydrogen evolution reaction." Dalton Transactions 45, no. 16 (2016): 6974–82. http://dx.doi.org/10.1039/c6dt00082g.
Full textFodor, Szilvia, Lucian Baia, Klára Hernádi, and Zsolt Pap. "Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity." Materials 13, no. 17 (2020): 3665. http://dx.doi.org/10.3390/ma13173665.
Full textSelvakumar, Ilamparithy, Nils Boysen, Marco Bürger, and Anjana Devi. "In Pursuit of Next Generation N-Heterocyclic Carbene-Stabilized Copper and Silver Precursors for Metalorganic Chemical Vapor Deposition and Atomic Layer Deposition Processes." Chemistry 5, no. 3 (2023): 2038–55. http://dx.doi.org/10.3390/chemistry5030138.
Full textLan, Guo, Zhiqiang Xie, Zhenwei Huang, et al. "Amorphous Alloy: Promising Precursor to Form Nanoflowerpot." Advances in Materials Science and Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/263681.
Full textBaláž, Matej, Anna Zorkovská, Farit Urakaev, et al. "Ultrafast mechanochemical synthesis of copper sulfides." RSC Advances 6, no. 91 (2016): 87836–42. http://dx.doi.org/10.1039/c6ra20588g.
Full textMoreno-Bárcenas, A., J. F. Perez-Robles, Y. V. Vorobiev, N. Ornelas-Soto, A. Mexicano, and A. G. García. "Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure." Journal of Nanomaterials 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/3457263.
Full textGorai, Soma. "Morphology Controlled Synthesis of Copper Sulphide Microparticles by using Various Copper Precursors." Journal of scientific research 64, no. 02 (2020): 385–88. http://dx.doi.org/10.37398/jsr.2020.640252.
Full textTran, Phong Dinh, Audrey Allavena-Valette, Farah Kamous, and Pascal Doppelt. "Novel valuable fluorine free copper(I) precursors for copper chemical vapor deposition." Polyhedron 28, no. 18 (2009): 4091–95. http://dx.doi.org/10.1016/j.poly.2009.09.029.
Full textMore, D. S., and M. J. Moloto. "Silver and copper nanoparticles: Lower concentration controlled thermal decomposition of their salt precursors." Digest Journal of Nanomaterials and Biostructures 18, no. 2 (2023): 773–82. http://dx.doi.org/10.15251/djnb.2023.182.773.
Full textKrisyuk, V. V., S. V. Sysoev, Y. M. Rumyantsev, et al. "New Heteroleptic Copper(II) Complexes as MOCVD Precursors." Physics Procedia 46 (2013): 174–82. http://dx.doi.org/10.1016/j.phpro.2013.07.065.
Full textDoppelt, Pascal. "Copper CVD precursors and processes for advanced metallization." Microelectronic Engineering 37-38 (November 1997): 89–95. http://dx.doi.org/10.1016/s0167-9317(97)00097-x.
Full textHwang, Soontaik, Hyungsoo Choi, and Ilwun Shim. "Copper CVD Precursors Containing Alkyl 3-Oxobutanoate Ligands." Chemistry of Materials 8, no. 5 (1996): 981–83. http://dx.doi.org/10.1021/cm950436r.
Full textWatanabe, Rogério H., Maurício C. Gois, and Benedito S. Lima-Neto. "Organic additive–copper(II) complexes as plating precursors." Surface and Coatings Technology 204, no. 4 (2009): 497–502. http://dx.doi.org/10.1016/j.surfcoat.2009.08.020.
Full textMuñoz, Verónica, Fatima Maria Zanon Zotin, and Luz Amparo Palacio. "Copper–aluminum hydrotalcite type precursors for NOx abatement." Catalysis Today 250 (July 2015): 173–79. http://dx.doi.org/10.1016/j.cattod.2014.06.004.
Full textZalenkiene, Skirma, Judita Sukyte, Remigijus Ivanauskas, and Vitalijus Janickis. "Selenopentathionic and Telluropentathionic Acids as Precursors for Formation of Semiconducting Layers on the Surface of Polyamide." International Journal of Photoenergy 2007 (2007): 1–7. http://dx.doi.org/10.1155/2007/72497.
Full textMahr, Muhammad Shabir, Thomas Hübert, Ina Stephan, Michael Bücker, and Holger Militz. "Reducing copper leaching from treated wood by sol-gel derived TiO2 and SiO2 depositions." Holzforschung 67, no. 4 (2013): 429–35. http://dx.doi.org/10.1515/hf-2012-0105.
Full textRondón Almeyda, Carlos Eduardo, Monica Andrea Botero Londoño, and Rogelio Ospina Ospina. "Finite Element Analysis of An Evaporation System to Synthesize Kesterite thin Films." Revista Ingenierías Universidad de Medellín 20, no. 38 (2021): 51–66. http://dx.doi.org/10.22395/rium.v20n38a3.
Full text