To see the other types of publications on this topic, follow the link: Copper system.

Journal articles on the topic 'Copper system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Copper system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

McCormick, B. J., C. Siemer, F. Afroz, J. R. Wasson, D. M. Eichhorn, B. Scott, S. Shah, K. Noffsinger, and P. K. Kahol. "The copper acetylenedicarboxylate system." Synthetic Metals 120, no. 1-3 (March 2001): 969–70. http://dx.doi.org/10.1016/s0379-6779(00)00745-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murray, J. L. "The aluminium-copper system." International Materials Reviews 30, no. 1 (January 1985): 211–34. http://dx.doi.org/10.1179/imr.1985.30.1.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murray, J. L. "The aluminium-copper system." International Metals Reviews 30, no. 1 (January 1985): 211–34. http://dx.doi.org/10.1179/imtr.1985.30.1.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stel'makhovych, B. M., Yu B. Kuz'ma, and V. S. Babizhet'sky. "The ytterbium-copper-aluminium system." Journal of Alloys and Compounds 190, no. 2 (January 1993): 161–64. http://dx.doi.org/10.1016/0925-8388(93)90393-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

R., Indra Gandhi. "Pre-processing and Feature Extraction for a Copper Plate Character Recognition System." Journal of Advanced Research in Dynamical and Control Systems 12, SP3 (February 28, 2020): 1071–77. http://dx.doi.org/10.5373/jardcs/v12sp3/20201353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ishikawa, Y., O. Kido, Y. Kimura, M. Kurumada, H. Suzuki, Y. Saito, and C. Kaito. "Mechanism of copper selenide growth on copper-oxide–selenium system." Surface Science 548, no. 1-3 (January 2004): 276–80. http://dx.doi.org/10.1016/j.susc.2003.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stevels, A. L. N., and F. Jellinek. "Phase transitions in copper chalcogenides: I. The copper-selenium system." Recueil des Travaux Chimiques des Pays-Bas 90, no. 3 (September 2, 2010): 273–83. http://dx.doi.org/10.1002/recl.19710900307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turchanin, M. A. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. III. Copper-chromium system." Powder Metallurgy and Metal Ceramics 45, no. 9-10 (September 2006): 457–67. http://dx.doi.org/10.1007/s11106-006-0106-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turchanin, M. A., P. G. Agraval, and A. R. Abdulov. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. IV. Copper-manganese system." Powder Metallurgy and Metal Ceramics 45, no. 11-12 (November 2006): 569–81. http://dx.doi.org/10.1007/s11106-006-0121-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turchanin, M. A., and P. G. Agraval. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper-cobalt system." Powder Metallurgy and Metal Ceramics 46, no. 1-2 (January 2007): 77–89. http://dx.doi.org/10.1007/s11106-007-0013-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Turchanin, M. A., P. G. Agraval, and A. R. Abdulov. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper-nickel system." Powder Metallurgy and Metal Ceramics 46, no. 9-10 (September 2007): 467–77. http://dx.doi.org/10.1007/s11106-007-0073-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Muralidharan, V. S., R. Ravi, G. Rajagopal, N. Palaniswamy, and K. Balakrishnan. "Optical Study of Copper-Inhibitor System." Key Engineering Materials 20-28 (January 1991): 537–41. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Baik, Doo, Won Lee, and Yun Park. "Interfacial Characterization of POLYBENZOXAZOLE/COPPER System." Molecular Crystals and Liquid Crystals 424, no. 1 (January 2004): 265–71. http://dx.doi.org/10.1080/15421400490506270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Galkowski, Joseph J. "Copper vapor laser acoustic thermometry system." Journal of the Acoustical Society of America 84, no. 1 (July 1988): 461. http://dx.doi.org/10.1121/1.396932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chakrabarti, D. J., and D. E. Laughlin. "The Cu−Ir (Copper-Iridium) system." Journal of Phase Equilibria 8, no. 2 (April 1987): 132–36. http://dx.doi.org/10.1007/bf02873198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chakrabarti, D. J., and D. E. Laughlin. "The Cu-Hg (Copper-Mercury) system." Bulletin of Alloy Phase Diagrams 6, no. 6 (December 1985): 522–27. http://dx.doi.org/10.1007/bf02887149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pelton, A. D. "The Cu−Li (Copper-Lithium) system." Bulletin of Alloy Phase Diagrams 7, no. 2 (April 1986): 142–44. http://dx.doi.org/10.1007/bf02881552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Olesinski, R. W., and G. J. Abbaschian. "The Cu−Si (Copper-Silicon) system." Bulletin of Alloy Phase Diagrams 7, no. 2 (April 1986): 170–78. http://dx.doi.org/10.1007/bf02881559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Subramanian, P. R., and D. E. Laughlin. "The As−Cu (Arsenic-Copper) system." Bulletin of Alloy Phase Diagrams 9, no. 5 (October 1988): 605–18. http://dx.doi.org/10.1007/bf02881964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Subramanian, P. R., and D. E. Laughlin. "The Cu−In (Copper-Indium) system." Bulletin of Alloy Phase Diagrams 10, no. 5 (October 1989): 554–68. http://dx.doi.org/10.1007/bf02882415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Subramanlan, P. R., and D. E. Laughlln. "The Cd-Cu (Cadmium-Copper) system." Bulletin of Alloy Phase Diagrams 11, no. 2 (April 1990): 160–69. http://dx.doi.org/10.1007/bf02841702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Subramanian, P. R., and D. E. Laughlin. "The Cu-Mo (Copper-Molybdenum) system." Bulletin of Alloy Phase Diagrams 11, no. 2 (April 1990): 169–72. http://dx.doi.org/10.1007/bf02841703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lutsenko, Svetlana, Clorissa Washington-Hughes, Martina Ralle, and Katharina Schmidt. "Copper and the brain noradrenergic system." JBIC Journal of Biological Inorganic Chemistry 24, no. 8 (November 5, 2019): 1179–88. http://dx.doi.org/10.1007/s00775-019-01737-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chakrabarti, D. J., D. E. Laughlin, and L. E. Tanner. "The Be−Cu (Beryllium-Copper) system." Bulletin of Alloy Phase Diagrams 8, no. 3 (June 1987): 269–82. http://dx.doi.org/10.1007/bf02874919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pelton, A. D. "The Cu−Na (Copper-Sodium) system." Bulletin of Alloy Phase Diagrams 7, no. 1 (February 1986): 25–27. http://dx.doi.org/10.1007/bf02874977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pelton, A. D. "The Cu−Rb (Copper-Rubidium) system." Bulletin of Alloy Phase Diagrams 7, no. 1 (February 1986): 28. http://dx.doi.org/10.1007/bf02874978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Olesinski, R. W., and G. J. Abbaschian. "The Cu−Ge (Copper-Germanium) system." Bulletin of Alloy Phase Diagrams 7, no. 1 (February 1986): 28–35. http://dx.doi.org/10.1007/bf02874979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chakrabarti, D. J., D. E. Laughlin, and D. E. Peterson. "The Cu−Th (Copper-Thorium) system." Bulletin of Alloy Phase Diagrams 7, no. 1 (February 1986): 36–43. http://dx.doi.org/10.1007/bf02874980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Subramanian, P. R., and D. E. Laughlin. "The Cu-Hf (copper-hafnium) system." Bulletin of Alloy Phase Diagrams 9, no. 1 (February 1988): 51–56. http://dx.doi.org/10.1007/bf02877460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pelton, A. D. "The Cs−Cu (Cesium-Copper) system." Bulletin of Alloy Phase Diagrams 8, no. 1 (February 1987): 42–43. http://dx.doi.org/10.1007/bf02868889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Pelton, A. D. "The Cu−K (Copper-Potassium) system." Bulletin of Alloy Phase Diagrams 7, no. 3 (June 1986): 231. http://dx.doi.org/10.1007/bf02868995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Subramanian, P. R., and D. E. Laughlin. "The Cu-Ta (Copper-Tantalum) system." Bulletin of Alloy Phase Diagrams 10, no. 6 (December 1989): 652–55. http://dx.doi.org/10.1007/bf02877637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Subramanian, P. R., and J. H. Perepezko. "The ag-cu (silver-copper) system." Journal of Phase Equilibria 14, no. 1 (February 1993): 62–75. http://dx.doi.org/10.1007/bf02652162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gokcen, N. A. "The cu-mn (copper-manganese) system." Journal of Phase Equilibria 14, no. 1 (February 1993): 76–83. http://dx.doi.org/10.1007/bf02652163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Saunders, N., and A. P. Miodownik. "The Cu-Sn (Copper-Tin) system." Bulletin of Alloy Phase Diagrams 11, no. 3 (June 1990): 278–87. http://dx.doi.org/10.1007/bf03029299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zlobin, Ilya E. "Labile copper pool as the essential component of copper homeostasis system." Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, no. 31(1) (September 1, 2015): 67–83. http://dx.doi.org/10.17223/19988591/31/6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Luo, Rutie. "Overall equilibrium diagrams for hydrometallurgical systems: copper-ammonia-water system." Hydrometallurgy 17, no. 2 (January 1987): 177–99. http://dx.doi.org/10.1016/0304-386x(87)90051-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Turchanin, M. A. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. II. The copper-vanadium system." Powder Metallurgy and Metal Ceramics 45, no. 5-6 (May 2006): 272–78. http://dx.doi.org/10.1007/s11106-006-0075-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Turchanin, M. A. "Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper-scandium system." Powder Metallurgy and Metal Ceramics 45, no. 3-4 (March 2006): 143–52. http://dx.doi.org/10.1007/s11106-006-0055-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

de Lacy Costello, B. P. J. "Constructive Chemical Processors — Experimental Evidence that Shows this Class of Programmable Pattern Forming Reactions Exist at the Edge of a Highly Nonlinear Region." International Journal of Bifurcation and Chaos 13, no. 06 (June 2003): 1561–64. http://dx.doi.org/10.1142/s0218127403007382.

Full text
Abstract:
An adapted chemical processor for the computation of a mixed cell Voronoi diagram has been fabricated. A novel copper ferrocyanide based system was combined with a ferric ferrocyanide based system. At higher substrate loading the predictable (programmable) pattern forming structure is lost as the copper system is subject to a chemical instability. The unstable copper system and analogous systems constitute a new class of pattern forming reactions.
APA, Harvard, Vancouver, ISO, and other styles
41

Gershman, Evgeny I., and Sergei Zhevnenko. "Grain Boundary Surface Tension, Segregation and Diffusion in Cu-Sn System." Defect and Diffusion Forum 264 (April 2007): 39–46. http://dx.doi.org/10.4028/www.scientific.net/ddf.264.39.

Full text
Abstract:
Grain boundary and free surface tension for pure copper and copper-tin alloys are measured. On the base of these data isothermes of grain boundary tension, free surface tension and isothermes of adsorption are constructed in assumption of a dilute solution. Grain boundary diffusion coefficients of copper were calculated by using the relation of Borisov et. al. for copper and copper-tin alloys.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, X., K. Brussee, Caroline T. Coutinho, and J. N. Rooney-Varga. "Chemical stress induced by copper: examination of a biofilm system." Water Science and Technology 54, no. 9 (November 1, 2006): 191–99. http://dx.doi.org/10.2166/wst.2006.865.

Full text
Abstract:
Biofilm systems have been widely used in wastewater treatment plants. However, little information is available on the impact of toxic chemicals on the performance of fixed film systems. This study was aimed at evaluating the impact of copper on a biofilm system by examining a variety of parameters, including reactor pH, DO, substrate concentrations, secretion of extracellular polymeric substances (EPS), and copper removal and accumulation. The microbial communities in the biofilms were also examined using automated ribosomal intergenic spacer analysis (ARISA). Four rotating drum biofilm reactors were used to produce biofilms. One reactor was used to produce biofilms under copper free conditions; while the others were used to produce biofilms grown under three different copper contamination levels, namely 100 ppb, 200 ppb, and 500 ppb, for a prolonged period. The following results were obtained: (1) biofilm reactor performance was not significantly impacted as demonstrated by the pH, DO, substrate removal, and total solids in the effluent; (2) however, copper contamination inhibited EPS production in the biofilms; (3) copper removal efficiencies of 25–31% were obtained for the three copper contamination levels studied; (4) fixed films functionalized as a reservoir to accumulate more copper over time; and (5) copper contamination selected for specific species that were able to tolerate this stress and that may contribute to its remediation.
APA, Harvard, Vancouver, ISO, and other styles
43

Xing, Wan, and Yong Jiang. "Research on Copper Foil Post-Processor Tension Control System." Applied Mechanics and Materials 43 (December 2010): 221–24. http://dx.doi.org/10.4028/www.scientific.net/amm.43.221.

Full text
Abstract:
The copper foil post-processor is used to deal with the surface of copper, and the tension control is an important issue for the quality of the product.With reference to the process of copper foil post-treatment, this paper introduces the hardware and software design of its tension control system respectively and the result has fulfilled the tension control function very well.
APA, Harvard, Vancouver, ISO, and other styles
44

Bryson, James W., Diana M. Ralston, and Thomas V. O'Halloran. "A copper detoxification complex and a copper metalloregulatory protein from an E. Coli copper resistance system." Journal of Inorganic Biochemistry 43, no. 2-3 (August 1991): 516. http://dx.doi.org/10.1016/0162-0134(91)84493-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Irangu, Japhet K., and R. B. Jordan. "Copper-63 NMR Line width Study of the Copper(I)−Acetonitrile System." Inorganic Chemistry 42, no. 12 (June 2003): 3934–42. http://dx.doi.org/10.1021/ic030020c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deschamps, P., N. Zerrouk, T. Martens, M. F. Charlot, J. J. Girerd, J. C. Chaumeil, and A. Tomas. "Copper Complexation by Amino Acid:l-Glutamine–Copper(II)–l-Histidine Ternary System." Journal of Trace and Microprobe Techniques 21, no. 4 (January 2, 2003): 729–41. http://dx.doi.org/10.1081/tma-120025823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wu, Lian-Kui, Chao-Chao Li, Ze-Feng Zhang, Hua-Zhen Cao, Jin Xue, and Guo-Qu Zheng. "Effect of Tellurium on Copper Electrodeposition in Copper Sulfate-Sulfuric Acid System." Journal of The Electrochemical Society 164, no. 7 (2017): D451—D456. http://dx.doi.org/10.1149/2.1151707jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

李, 超超. "Effect of Tellurium on Copper Electrodeposition in Copper Sulfate-Sulfuric Acid System." Metallurgical Engineering 03, no. 02 (2016): 64–71. http://dx.doi.org/10.12677/meng.2016.32010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Anik, M. "Selection of an oxidant for copper chemical mechanical polishing: Copper-iodate system." Journal of Applied Electrochemistry 35, no. 1 (January 2005): 1–7. http://dx.doi.org/10.1007/s10800-004-1763-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Turel, Iztok, Janez Košmrlj, Bjørn Andersen, and Einar Sletten. "NMR Investigation of the Copper(II)-Ciprofloxacin System." Metal-Based Drugs 6, no. 1 (January 1, 1999): 1–4. http://dx.doi.org/10.1155/mbd.1999.1.

Full text
Abstract:
A proton NMR study was performed on the copper(ll)-ciprofloxacin system. The proton relaxation times (T1) were determined from the titration data in acidic and basic media. In acidic medium the H5 signal is dramatically affected and it is assumed that copper is bonded to the quinolone through carbonyl and one of the carboxyl oxygens. Such bonding is in agreement with the X-ray literature data for the complex [Cu(cf)2]Cl2.6H2O isolated from the slightly acidic solution. There are additional significant changes in T1 of H3′ and H5′ atoms which suggest that the terminal nitrogen atom of the piperazine ring system-N4′ also interacts with copper in the basic conditions. Thus it is plausible that more than one species are present in the solution at high pH values.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography