Academic literature on the topic 'Coq formalization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coq formalization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coq formalization"

1

Boender, Jaap, Florian Kammüller, and Rajagopal Nagarajan. "Formalization of Quantum Protocols using Coq." Electronic Proceedings in Theoretical Computer Science 195 (November 4, 2015): 71–83. http://dx.doi.org/10.4204/eptcs.195.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cogumbreiro, Tiago, Jun Shirako, and Vivek Sarkar. "Formalization of Habanero phasers using Coq." Journal of Logical and Algebraic Methods in Programming 90 (August 2017): 50–60. http://dx.doi.org/10.1016/j.jlamp.2017.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cogumbreiro, Tiago, Jun Shirako, and Vivek Sarkar. "Formalization of Habanero phasers using Coq." Journal of Logical and Algebraic Methods in Programming 90 (August 1, 2017): 50–60. https://doi.org/10.1016/j.jlamp.2017.02.006.

Full text
Abstract:
Phasers pose an interesting synchronization mechanism that generalizes many collective synchronization patterns seen in parallel programming languages, including barriers, clocks, and point-to-point synchronization using latches or semaphores. This work characterizes scheduling constraints on phaser operations, by relating the execution state of two tasks that operate on the same phaser. We propose a formalization of Habanero phasers, May-Happen-In-Parallel, and Happens-Before relations for phaser operations, and show that these relations conform with the semantics. Our formalization and proof
APA, Harvard, Vancouver, ISO, and other styles
4

Cohen, Joshua M., and Philip Johnson-Freyd. "A Formalization of Core Why3 in Coq." Proceedings of the ACM on Programming Languages 8, POPL (2024): 1789–818. http://dx.doi.org/10.1145/3632902.

Full text
Abstract:
Intermediate verification languages like Why3 and Boogie have made it much easier to build program verifiers, transforming the process into a logic compilation problem rather than a proof automation one. Why3 in particular implements a rich logic for program specification with polymorphism, algebraic data types, recursive functions and predicates, and inductive predicates; it translates this logic to over a dozen solvers and proof assistants. Accordingly, it serves as a backend for many tools, including Frama-C, EasyCrypt, and GNATProve for Ada SPARK. But how can we be sure that these tools ar
APA, Harvard, Vancouver, ISO, and other styles
5

BOLDO, SYLVIE, CATHERINE LELAY, and GUILLAUME MELQUIOND. "Formalization of real analysis: a survey of proof assistants and libraries." Mathematical Structures in Computer Science 26, no. 7 (2015): 1196–233. http://dx.doi.org/10.1017/s0960129514000437.

Full text
Abstract:
In the recent years, numerous proof systems have improved enough to be used for formally verifying non-trivial mathematical results. They, however, have different purposes and it is not always easy to choose which one is adapted to undertake a formalization effort. In this survey, we focus on properties related to real analysis: real numbers, arithmetic operators, limits, differentiability, integrability and so on. We have chosen to look into the formalizations provided in standard by the following systems: Coq, HOL4, HOL Light, Isabelle/HOL, Mizar, ProofPower-HOL, and PVS. We have also accoun
APA, Harvard, Vancouver, ISO, and other styles
6

PELAYO, ÁLVARO, VLADIMIR VOEVODSKY, and MICHAEL A. WARREN. "A univalent formalization of the p-adic numbers." Mathematical Structures in Computer Science 25, no. 5 (2015): 1147–71. http://dx.doi.org/10.1017/s0960129514000541.

Full text
Abstract:
The goal of this paper is to report on a formalization of the p-adic numbers in the setting of the second author's univalent foundations program. This formalization, which has been verified in the Coq proof assistant, provides an approach to the p-adic numbers in constructive algebra and analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Rauber Du Bois, André, Rodrigo Ribeiro, and Maycon Amaro. "A Mechanized Proof of a Textbook Type Unification Algorithm." Revista de Informática Teórica e Aplicada 27, no. 3 (2020): 13–24. http://dx.doi.org/10.22456/2175-2745.100968.

Full text
Abstract:
Unification is the core of type inference algorithms for modern functional programming languages, like Haskell and SML. As a first step towards a formalization of a type inference algorithm for such programming languages, we present a formalization in Coq of a type unification algorithm that follows classic algorithms presented in programming language textbooks. We also report on the use of such formalization to build a correct type inference algorithm for the simply typed λ-calculus.
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Yichi, Daniel J. Dougherty, and Rose Bohrer. "A Coq Formalization of Unification Modulo Exclusive-Or." Electronic Proceedings in Theoretical Computer Science 416 (February 11, 2025): 267–73. https://doi.org/10.4204/eptcs.416.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

VOEVODSKY, VLADIMIR. "An experimental library of formalized Mathematics based on the univalent foundations." Mathematical Structures in Computer Science 25, no. 5 (2015): 1278–94. http://dx.doi.org/10.1017/s0960129514000577.

Full text
Abstract:
This is a short overview of an experimental library of Mathematics formalized in the Coq proof assistant using the univalent interpretation of the underlying type theory of Coq. I started to work on this library in February 2010 in order to gain experience with formalization of Mathematics in a constructive type theory based on the intuition gained from the univalent models (see Kapulkin et al. 2012).
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Yaoshun, and Wensheng Yu. "Formalizing Calculus without Limit Theory in Coq." Mathematics 9, no. 12 (2021): 1377. http://dx.doi.org/10.3390/math9121377.

Full text
Abstract:
Formal verification of mathematical theory has received widespread concern and grown rapidly. The formalization of the fundamental theory will contribute to the development of large projects. In this paper, we present the formalization in Coq of calculus without limit theory. The theory aims to found a new form of calculus more easily but rigorously. This theory as an innovation differs from traditional calculus but is equivalent and more comprehensible. First, the definition of the difference-quotient control function is given intuitively from the physical facts. Further, conditions are added
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Coq formalization"

1

Bartzia, Evmorfia-Iro. "A formalization of elliptic curves for cryptography." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX002/document.

Full text
Abstract:
Le sujet de ma thèse s’inscrit dans le domaine des preuves formelleset de la vérification des algorithmescryptographiques. L’implémentation des algorithmes cryptographiquesest souvent une tâche assez compliquée, parce qu’ils sont optimiséspour être efficaces et sûrs en même temps. Par conséquent, il n’estpas toujours évident qu’un programme cryptographique en tant quefonction, corresponde exactement à l’algorithme mathématique,c’est-à-dire que le programme soit correct. Les erreurs dans lesprogrammes cryptographiques peuvent mettre en danger la sécurité desystèmes cryptographiques entiers et d
APA, Harvard, Vancouver, ISO, and other styles
2

RAMOS, Marcus Vinícius Midena. "Formalization of context-free language theory." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17642.

Full text
Abstract:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-08-08T13:11:15Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese.pdf: 4855618 bytes, checksum: 717d268b142705bdc8ce106731a257db (MD5)<br>Made available in DSpace on 2016-08-08T13:11:15Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese.pdf: 4855618 bytes, checksum: 717d268b142705bdc8ce106731a257db (MD5) Previous issue date: 2016-03-28<br>CAPEs<br>Proof assistants are software-based tools that are used in
APA, Harvard, Vancouver, ISO, and other styles
3

Lundstedt, Anders. "Realizability in Coq." Thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174109.

Full text
Abstract:
This thesis describes a Coq formalization of realizability interpretations of arithmetic. The realizability interpretations are based on partial combinatory algebras—to each partial combinatory algebra there is an associated realizability interpretation. I construct two partial combinatory algebras. One of these gives a realizability interpretation equivalent to Kleene’s original one, without involving the usual recursion-theoretic machinery.<br>Den här uppsatsen beskriver en Coq-formalisering av realiserbarhetstolkningar av aritmetik. Realiserbarhetstolkningarna baseras på partiella kombinato
APA, Harvard, Vancouver, ISO, and other styles
4

Athalye, Anish (Anish R. ). "CoqIOA : a formalization of IO automata in the Coq proof assistant." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112831.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 51-53).<br>Implementing distributed systems correctly is difficult. Designing correct distributed systems protocols is challenging because designs must account for concurrent operation and handle network and machine failures
APA, Harvard, Vancouver, ISO, and other styles
5

Mouhcine, Houda. "Formal Proofs in Applied Mathematics : A Coq Formalization of Simplicial Lagrange Finite Elements." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG112.

Full text
Abstract:
Cette thèse est dédiée au développement de preuves formelles de théorèmes et propositions mathématiques dans le domaine de l'analyse réelle, en utilisant l'assistant de preuve Coq pour garantir leur exactitude. Le cœur de ce travail est divisé en deux parties principales.La première partie se concentre sur l'utilisation de Coq pour formaliser des principes mathématiques clés tels que le principe d'induction de Lebesgue et le théorème de Tonelli, permettant le calcul d'intégrales doubles sur des espaces produits en intégrant de manière itérative par rapport à chaque variable. Ce travail s'appui
APA, Harvard, Vancouver, ISO, and other styles
6

Vinogradova, Polina. "Formalizing Abstract Computability: Turing Categories in Coq." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36354.

Full text
Abstract:
The concept of a recursive function has been extensively studied using traditional tools of computability theory. However, with the development of category-theoretic methods it has become possible to study recursion in a more general (abstract) sense. The particular model this thesis is structured around is known as a Turing category. The structure within a Turing category models the notion of partiality as well as recursive computation, and equips us with the tools of category theory to study these concepts. The goal of this work is to build a formal language description of this computation m
APA, Harvard, Vancouver, ISO, and other styles
7

Di, Guardia Rémi. "Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.

Full text
Abstract:
Cette thèse s'intéresse à l'égalité des preuves et des formules en logique linéaire, avec des contributions en particulier dans le fragment multiplicatif-additif de cette logique. En logique linéaire, et dans de nombreuses autres logiques (telle que la logique intuitionniste), on dispose de deux transformations sur les preuves : l'élimination des coupures et l'expansion des axiomes. On souhaite très souvent identifier deux preuves reliées par ces transformations, étant donné qu'elles le sont sémantiquement (dans un modèle catégorique par exemple). Cette situation est similaire à celle du λ-cal
APA, Harvard, Vancouver, ISO, and other styles
8

Castro, Cubas Edwars Sleiters, and Pisfil Patricia Nelida Cárdenas. "El incremento patrimonial no justificado y su impacto en la fiscalización tributaria a los youtubers peruanos con más de 100,000 suscriptores de lima 2018." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/652586.

Full text
Abstract:
Hoy en día, el desarrollo tecnológico, permite tener más actividades de servicios realizados por personas naturales, las cuales son gravables con el Impuesto a la Renta e Impuesto General a las Ventas y por ende se requerirá un mayor control por parte de la Administración Tributaria. En estos tiempos de millennials uno de los tantos ingresos que se generan utilizando la tecnología, provienen de los Youtubers, quienes por su falta de conocimiento de sus obligaciones tributarias y/o falta conciencia tributaria, incide en que incumplan con el pago de sus impuestos. Dichas omisiones ocasionan una
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Coq formalization"

1

Guidance on leveraging sustainability pathways to accelerate formalization. ILO, 2024. http://dx.doi.org/10.54394/00000015.

Full text
Abstract:
This guidance note has been developed through the ongoing collaboration between the Federation of Egyptian Industries (FEI) and the International Labour Organization (ILO) within the framework of the regional project, "Social Dialogue for Formalization and Employability in the Southern Neighbourhood (SOLIFEM)," which is being implemented by the ILO and co-financed by the European Union in Egypt, among the four focus countries of the project (Algeria, Lebanon &amp; Occupied Palestinian Territories). The primary objective of this guidance note is to show the relationship between corporate sustai
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coq formalization"

1

Gallois-Wong, Diane, Sylvie Boldo, and Thibault Hilaire. "A Coq Formalization of Digital Filters." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96812-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cohen, Cyril, and Anders Mörtberg. "A Coq Formalization of Finitely Presented Modules." In Interactive Theorem Proving. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08970-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsai, Ming-Hsien, and Bow-Yaw Wang. "Modular Formalization of Reactive Modules in COQ." In Advances in Computer Science - ASIAN 2006. Secure Software and Related Issues. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-77505-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Génevaux, Jean-David, Julien Narboux, and Pascal Schreck. "Formalization of Wu’s Simple Method in Coq." In Certified Programs and Proofs. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25379-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Sheng, Yaoshun Fu, Dakai Guo, and Wensheng Yu. "A Formalization of Topological Spaces in Coq." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_21.

Full text
Abstract:
AbstractIt is a wish for Wu Wen-tsun to implement the mechanical proving of theorems in topology. Topological spaces constitute a fundamental concept of general topology, which is significant in understanding the essential content of general topology. Based on the machine proof system of axiomatic set theory, we presented a computer formalization of topological spaces in Coq. Basic examples of topological spaces are formalized, including indiscrete topological spaces and discrete topological spaces. Furthermore, the formal description of some well-known equivalent definitions of topological sp
APA, Harvard, Vancouver, ISO, and other styles
6

Affeldt, Reynald, and Manabu Hagiwara. "Formalization of Shannon’s Theorems in SSReflect-Coq." In Interactive Theorem Proving. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32347-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benzaken, Véronique, Évelyne Contejean, and Stefania Dumbrava. "A Coq Formalization of the Relational Data Model." In Programming Languages and Systems. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54833-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Affeldt, Reynald, and Naoki Kobayashi. "Formalization and Verification of a Mail Server in Coq." In Software Security — Theories and Systems. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36532-x_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dou, Guowei, and Wensheng Yu. "Formalization of the Filter Extension Principle (FEP) in Coq." In Communications in Computer and Information Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3951-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Dakai, Shukun Leng, Si Chen, and Wensheng Yu. "Lagrange’s Theorem in Group Theory: Formalization and Proof with Coq." In Communications in Computer and Information Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3951-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coq formalization"

1

Yu, Liumiao, Yan Chen, and Wensheng Yu. "Formalization of the Cauchy Convergence Criterion for Sequences in Coq." In 2024 China Automation Congress (CAC). IEEE, 2024. https://doi.org/10.1109/cac63892.2024.10864519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yifei, and Gang Chen. "Formalization of Laplace Transform in Coq." In 2017 International Conference on Dependable Systems and Their Applications (DSA). IEEE, 2017. http://dx.doi.org/10.1109/dsa.2017.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Benzaken, Véronique, Sarah Cohen-Boulakia, Évelyne Contejean, Chantal Keller, and Rébecca Zucchini. "A Coq formalization of data provenance." In CPP '21: 10th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM, 2021. http://dx.doi.org/10.1145/3437992.3439920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Tianyu, Wensheng Yu, and Yaoshun Fu. "Formalization of Transfinite Induction in Coq*." In 2019 Chinese Automation Congress (CAC). IEEE, 2019. http://dx.doi.org/10.1109/cac48633.2019.8997376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leng, Shukun, Dakai Guo, and Wensheng Yu. "Formalization of Dedekind Fundamental Theorem in Coq." In 2023 China Automation Congress (CAC). IEEE, 2023. http://dx.doi.org/10.1109/cac59555.2023.10450761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Hai, Gang Chen, Xiaoyu Song, and Ming Gu. "Formalization and Verification of PLC Timers in Coq." In 2009 33rd Annual IEEE International Computer Software and Applications Conference. IEEE, 2009. http://dx.doi.org/10.1109/compsac.2009.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Philippe, Jolan, Wadoud Bousdira, and Frederic Loulergue. "Formalization of a Big Graph API in Coq." In 2017 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2017. http://dx.doi.org/10.1109/hpcs.2017.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauer, Andrej, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. "The HoTT library: a formalization of homotopy type theory in Coq." In CPP '17: Certified Proofs and Programs. ACM, 2017. http://dx.doi.org/10.1145/3018610.3018615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wieczorek, Paweł, and Dariusz Biernacki. "A Coq formalization of normalization by evaluation for Martin-Löf type theory." In CPP '18: Certified Proofs and Programs. ACM, 2018. http://dx.doi.org/10.1145/3167091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wieczorek, Paweł, and Dariusz Biernacki. "A Coq formalization of normalization by evaluation for Martin-Löf type theory." In the 7th ACM SIGPLAN International Conference. ACM Press, 2018. http://dx.doi.org/10.1145/3176245.3167091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!