To see the other types of publications on this topic, follow the link: Core Binding Factor alpha Subunits.

Dissertations / Theses on the topic 'Core Binding Factor alpha Subunits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Core Binding Factor alpha Subunits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pande, Sandhya. "Regulation of Runx Proteins in Human Cancers: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/559.

Full text
Abstract:
Runt related transcription factors (Runx) play an important role in mammalian development by regulating the expression of key genes involved in cell proliferation, differentiation and growth. The work described in this thesis details the mechanisms by which the activity of two members of this family are regulated in human cells. Chapter One provides a brief introduction of Runx transcription factors. Chapter Two describes the regulation of Runx2 protein by the PI3 kinase/Akt pathway in human breast cancer cells. The PI3 kinase/Akt pathway is one of the major signal transduction pathways through which growth factors influence cell proliferation and survival. It is also one of the most frequently dysregulated pathways in human cancers. We identify Runx2 protein, a key regulator of breast cancer invasion as a novel substrate of Akt kinase and map residues of Runx2 that are phosphorylated by Akt in breast cancer cells. Our results show that phosphorylation by Akt increases the binding of Runx2 protein to its target gene promoters and we identify the phosphorylation events that enhance DNA binding of Runx2. Our work establishes Runx2 protein as a critical effecter downstream of Akt that regulates breast cancer invasion. In Chapter Three we describe the subnuclear localization of the tumor suppressor protein Runx3 during interphase and mitosis. We find that similar to other Runx family members, Runx3 protein resides in nuclear matrix associated foci during interphase. We delineate a subnuclear targeting signal that directs Runx3 to these nuclear matrix associated foci. Our work establishes that this association of Runx3 protein with the nuclear matrix plays a vital role in regulating its transcriptional activity. Chromatin immunoprecipitation results show that Runx3 occupies rRNA promoters during interphase. We also find that Runx3 remains associated with chromosomes during mitosis and localizes with nucleolar organizing regions (NORs), reflecting an interaction with epigenetic potential. This thesis provides novel insights into various mechanisms by which cells regulate the activity of Runx proteins.
APA, Harvard, Vancouver, ISO, and other styles
2

LeBlanc, Kimberly T. "Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A Dissertation." eScholarship@UMMS, 2002. http://escholarship.umassmed.edu/gsbs_diss/655.

Full text
Abstract:
The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied. The goals of this project were to characterize expression of Runx proteins in articular cartilage and differentiating chondrocytes and to determine the contribution of Runx1 to osteoarthritis (OA). Here, the expression pattern of Runx1 and Runx2 was characterized in normal bovine articular cartilage. Runx2 is expressed at higher levels in deep zone chondrocytes, while Runx1 is primarily expressed in superficial zone chondrocytes, which is the single cell layer that lines the surface of articular cartilage. Based on this finding, the hypothesis was tested that Runx1 is involved in osteoarthritis, which is a disease characterized by degradation of articular cartilage and changes in chondrocytes. These studies showed that Runx1 is upregulated in articular cartilage explants in response to mechanical compression. Runx1 was also expressed in chondrocytes found at the periphery of OA lesions in the articular cartilage of mice that underwent an OA-inducing surgery. Runx1 was also upregulated in cartilage explants of human osteoarthritic knees, and IHC data showed that Runx1 is mainly expressed in chondrocyte “clones” characteristic of OA. To ascertain the potential function of the upregulation of Runx1 in these cartilage stress conditions and disease states, the hypothesis was tested that Runx1 is upregulated in very specific chondrocyte populations in response to the cartilage damage in osteoarthritis. These studies addressed the properties of these cells that related to functions in cell growth and differentiation. In both the surface layer of normal articular cartilage, and in OA cartilage, Runx1 expression by IF co-localized with markers of mesenchymal progenitor cells, as well as markers of proliferation Ki-67 and PCNA. This finding indicated that Runx1 is found in a population of cells that represent a proliferative population of mesenchymal progenitor cells in osteoarthritis. To further address Runx1 function and identify downstream targets of Runx proteins, a promoter analysis of genes that are known to be either downregulated or upregulated during chondrocyte maturation was done. These studies found that many of these genes have 1 or more Runx binding sites within 2kb of their transcription start site, indicating that they are potential downstream Runx target genes. Lastly, some preliminary experiments were done to characterize novel roles of Runx proteins in the chondrocyte. Runx proteins have been shown to epigenetically regulate their target genes by remaining bound to them throughout mitosis, “poising” them for transcription upon exit from mitosis. The hypothesis that Runx proteins also function by remaining bound to their target genes throughout mitosis in chondrocytes was tested. It was demonstrated by immunofluorescense imaging of Runx proteins on metaphase chromosomes of ATDC5 cells, that Runx2 remains bound to chromosomes during mitosis. Cell proliferation and hypertrophy are both linked to increases in protein synthesis. Runx factors, which regulate rates of global protein synthesis, are expressed in both proliferating and hypertrophic chondrocytes. Thus, it was hypothesized that Runx proteins regulate rates of global protein synthesis during chondrocyte maturation. These studies showed that the overexpression of Runx proteins in a chondrocyte cell line (ATDC5) did not affect protein synthesis rates or levels of protein synthesis machinery. Additionally, Runx proteins did not affect proliferation rates in this chondrocyte cell line.
APA, Harvard, Vancouver, ISO, and other styles
3

LeBlanc, Kimberly T. "Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/655.

Full text
Abstract:
The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied. The goals of this project were to characterize expression of Runx proteins in articular cartilage and differentiating chondrocytes and to determine the contribution of Runx1 to osteoarthritis (OA). Here, the expression pattern of Runx1 and Runx2 was characterized in normal bovine articular cartilage. Runx2 is expressed at higher levels in deep zone chondrocytes, while Runx1 is primarily expressed in superficial zone chondrocytes, which is the single cell layer that lines the surface of articular cartilage. Based on this finding, the hypothesis was tested that Runx1 is involved in osteoarthritis, which is a disease characterized by degradation of articular cartilage and changes in chondrocytes. These studies showed that Runx1 is upregulated in articular cartilage explants in response to mechanical compression. Runx1 was also expressed in chondrocytes found at the periphery of OA lesions in the articular cartilage of mice that underwent an OA-inducing surgery. Runx1 was also upregulated in cartilage explants of human osteoarthritic knees, and IHC data showed that Runx1 is mainly expressed in chondrocyte “clones” characteristic of OA. To ascertain the potential function of the upregulation of Runx1 in these cartilage stress conditions and disease states, the hypothesis was tested that Runx1 is upregulated in very specific chondrocyte populations in response to the cartilage damage in osteoarthritis. These studies addressed the properties of these cells that related to functions in cell growth and differentiation. In both the surface layer of normal articular cartilage, and in OA cartilage, Runx1 expression by IF co-localized with markers of mesenchymal progenitor cells, as well as markers of proliferation Ki-67 and PCNA. This finding indicated that Runx1 is found in a population of cells that represent a proliferative population of mesenchymal progenitor cells in osteoarthritis. To further address Runx1 function and identify downstream targets of Runx proteins, a promoter analysis of genes that are known to be either downregulated or upregulated during chondrocyte maturation was done. These studies found that many of these genes have 1 or more Runx binding sites within 2kb of their transcription start site, indicating that they are potential downstream Runx target genes. Lastly, some preliminary experiments were done to characterize novel roles of Runx proteins in the chondrocyte. Runx proteins have been shown to epigenetically regulate their target genes by remaining bound to them throughout mitosis, “poising” them for transcription upon exit from mitosis. The hypothesis that Runx proteins also function by remaining bound to their target genes throughout mitosis in chondrocytes was tested. It was demonstrated by immunofluorescense imaging of Runx proteins on metaphase chromosomes of ATDC5 cells, that Runx2 remains bound to chromosomes during mitosis. Cell proliferation and hypertrophy are both linked to increases in protein synthesis. Runx factors, which regulate rates of global protein synthesis, are expressed in both proliferating and hypertrophic chondrocytes. Thus, it was hypothesized that Runx proteins regulate rates of global protein synthesis during chondrocyte maturation. These studies showed that the overexpression of Runx proteins in a chondrocyte cell line (ATDC5) did not affect protein synthesis rates or levels of protein synthesis machinery. Additionally, Runx proteins did not affect proliferation rates in this chondrocyte cell line.
APA, Harvard, Vancouver, ISO, and other styles
4

Dobson, Jason R. "Nuclear Organization in Breast Cancer: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/650.

Full text
Abstract:
The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon which transcriptional complexes and regulatory genomic sequences are organized. A hallmark of cancer is the disorganization of nuclear architecture; however, the extent to which the NM is involved in malignancy is not well studied. The RUNX1 and RUNX2 proteins form complexes within the NM to promote hematopoiesis and osteoblastogenesis, respectively at the transcriptional level. RUNX1 and RUNX2 are both expressed in breast cancer cells (BrCCs); however, their genome-wide BrCC functions are unknown. RUNX1 and RUNX2 activate many tumor suppressor pathways in blood and bone lineages, respectively, including attenuation of protein synthesis and cell growth via suppression of ribosomal RNA (rRNA) transcription, which appears contrary to Runx-expression in highly proliferative BrCCs. To define roles for RUNX1 and RUNX2 in BrCC phenotype, we examined the involvement of RUNX1 and RUNX2 in rRNA transcription and generated a genome-wide model for RUNX1 and RUNX2-binding and transcriptional regulation. To validate gene expression patterns identified in our screen, we developed a Real-Time qPCR primer design program, which allows rapid, high-throughput design of primer pairs (FoxPrimer). In BrCCs, RUNX1 and RUNX2 regulate genes that promote invasiveness and do not affect rRNA transcription, protein synthesis, or cell growth. We have characterized in vitro functions of Runx proteins in BrCCs; however, the relationships between Runx expression and diagnostic/prognostic markers of breast cancer (BrCa) in patients are not well studied. Immunohistochemical detection of RUNX1 and RUNX2 in BrCa tissue microarrays reveals RUNX1 expression is associated with early, smaller tumors that are ER+ (estrogen receptor), HER2+, p53-, and correlated with androgen receptor (AR) expression; RUNX2 expression is associated with late-stage, larger tumors that are HER2+. These results show that the functions and expression patterns of NM-associated RUNX1 and RUNX2 are context-sensitive, which suggests potential disease-specific roles. Two functionally disparate genomic sequence types bind to the NM: matrix associated regions (MARs) are functionally associated with transcriptional repression and scaffold associated regions (SARs) are functionally associated with actively expressed genes. It is unknown whether malignant nuclear disorganization affects the functions of MARs/SARs in BrCC. We have refined a method to isolate nuclear matrix associated DNA (NM-DNA) from a structurally preserved NM and applied this protocol to normal mammary epithelial cells and BrCCs. To define transcriptional functions for NM-DNA, we developed a computational algorithm (PeaksToGenes), which statistically tests the associations of experimentally-defined NM-DNA regions and ChIP-seq-defined positional enrichment of several histone marks with transcriptome-wide gene expression data. In normal mammary epithelial cells, NM-DNA is enriched in both MARs and SARs, and the positional enrichment patterns of MARs and SARs are strongly associated with gene expression patterns, suggesting functional roles. In contrast, the BrCCs are significantly enriched in the silencing mark H3K27me3, and the NM-DNA is enriched in MARs and depleted of SARs. The MARs/SARs in the BrCCs are only weakly associated with gene expression patterns, suggesting that loss of normal DNA-matrix associations accompanies the disease state. Our results show that structural preservation of the in situ NM allows isolation of both MARs and SARs, and further demonstrate that in a disorganized, cancerous nucleus, normal transcriptional functions of NM-DNA are disrupted. Our studies on nuclear organization in BrCC, show that the disorganized phenotype of the cancer cell nucleus is accompanied by deregulated transcriptional functions of two constituents of the NM. These results reinforce the role of the NM as an important structure-function component of gene expression regulation.
APA, Harvard, Vancouver, ISO, and other styles
5

Dobson, Jason R. "Nuclear Organization in Breast Cancer: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/650.

Full text
Abstract:
The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon which transcriptional complexes and regulatory genomic sequences are organized. A hallmark of cancer is the disorganization of nuclear architecture; however, the extent to which the NM is involved in malignancy is not well studied. The RUNX1 and RUNX2 proteins form complexes within the NM to promote hematopoiesis and osteoblastogenesis, respectively at the transcriptional level. RUNX1 and RUNX2 are both expressed in breast cancer cells (BrCCs); however, their genome-wide BrCC functions are unknown. RUNX1 and RUNX2 activate many tumor suppressor pathways in blood and bone lineages, respectively, including attenuation of protein synthesis and cell growth via suppression of ribosomal RNA (rRNA) transcription, which appears contrary to Runx-expression in highly proliferative BrCCs. To define roles for RUNX1 and RUNX2 in BrCC phenotype, we examined the involvement of RUNX1 and RUNX2 in rRNA transcription and generated a genome-wide model for RUNX1 and RUNX2-binding and transcriptional regulation. To validate gene expression patterns identified in our screen, we developed a Real-Time qPCR primer design program, which allows rapid, high-throughput design of primer pairs (FoxPrimer). In BrCCs, RUNX1 and RUNX2 regulate genes that promote invasiveness and do not affect rRNA transcription, protein synthesis, or cell growth. We have characterized in vitro functions of Runx proteins in BrCCs; however, the relationships between Runx expression and diagnostic/prognostic markers of breast cancer (BrCa) in patients are not well studied. Immunohistochemical detection of RUNX1 and RUNX2 in BrCa tissue microarrays reveals RUNX1 expression is associated with early, smaller tumors that are ER+ (estrogen receptor), HER2+, p53-, and correlated with androgen receptor (AR) expression; RUNX2 expression is associated with late-stage, larger tumors that are HER2+. These results show that the functions and expression patterns of NM-associated RUNX1 and RUNX2 are context-sensitive, which suggests potential disease-specific roles. Two functionally disparate genomic sequence types bind to the NM: matrix associated regions (MARs) are functionally associated with transcriptional repression and scaffold associated regions (SARs) are functionally associated with actively expressed genes. It is unknown whether malignant nuclear disorganization affects the functions of MARs/SARs in BrCC. We have refined a method to isolate nuclear matrix associated DNA (NM-DNA) from a structurally preserved NM and applied this protocol to normal mammary epithelial cells and BrCCs. To define transcriptional functions for NM-DNA, we developed a computational algorithm (PeaksToGenes), which statistically tests the associations of experimentally-defined NM-DNA regions and ChIP-seq-defined positional enrichment of several histone marks with transcriptome-wide gene expression data. In normal mammary epithelial cells, NM-DNA is enriched in both MARs and SARs, and the positional enrichment patterns of MARs and SARs are strongly associated with gene expression patterns, suggesting functional roles. In contrast, the BrCCs are significantly enriched in the silencing mark H3K27me3, and the NM-DNA is enriched in MARs and depleted of SARs. The MARs/SARs in the BrCCs are only weakly associated with gene expression patterns, suggesting that loss of normal DNA-matrix associations accompanies the disease state. Our results show that structural preservation of the in situ NM allows isolation of both MARs and SARs, and further demonstrate that in a disorganized, cancerous nucleus, normal transcriptional functions of NM-DNA are disrupted. Our studies on nuclear organization in BrCC, show that the disorganized phenotype of the cancer cell nucleus is accompanied by deregulated transcriptional functions of two constituents of the NM. These results reinforce the role of the NM as an important structure-function component of gene expression regulation.
APA, Harvard, Vancouver, ISO, and other styles
6

Madera, Dmitri. "Cooperating Events in Core Binding Factor Leukemia Development: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/532.

Full text
Abstract:
Leukemia is a hematopoietic cancer that is characterized by the abnormal differentiation and proliferation of hematopoietic cells. It is ranked 7th by death rate among cancer types in USA, even though it is not one of the top 10 cancers by incidence (USCS, 2010). This indicates an urgent need for more effective treatment strategies. In order to design the new ways of prevention and treatment of leukemia, it is important to understand the molecular mechanisms involved in development of the disease. In this study, we investigated mechanisms involved in the development of acute myeloid leukemia (AML) that is associated with CBF fusion genes. The RUNX1 and CBFB genes that encode subunits of a transcriptional regulator complex CBF, are mutated in a subset (20 – 25%) of AML cases. As a result of these mutations, fusion genes called CBFB-MYH11 and RUNX1-ETO arise. The chimeric proteins encoded by the fusion genes provide block in proliferation for myeloid progenitors, but are not sufficient for AML development. Genetic studies have indicated that activation of cytokine receptor signaling is a major oncogenic pathway that cooperates in leukemia development. The main goal of my work was to determine a role of two factors that regulate cytokine signaling activity, the microRNA cluster miR-17-92 and the thrombopoietin receptor MPL, in their potential cooperation with the CBF fusions in AML development. We determined that the miR-17-92 miRNA cluster cooperates with Cbfb-MYH11 in AML development in a mouse model of human CBFB-MYH11 AML. We found that the miR-17-92 cluster downregulates Pten and activates the PI3K/Akt pathway in the leukemic blasts. We also demonstrated that miR-17-92 provides an anti-apoptotic effect in the leukemic cells, but does not seem to affect proliferation. The anti-apoptotic effect was mainly due to activity of miR-17 and miR-20a, but not miR-19a and miR-19b. Our second study demonstrated that wild type Mpl cooperated with RUNX1-ETO fusion in development of AML in mice. Mpl induced PI3K/Akt, Ras/Raf/Erk and Jak2/Stat5 signaling pathways in the AML cells. We showed that PIK3/Akt pathway plays a role in AML development both in vitro and in vivo by increasing survival of leukemic cells. The levels of MPL transcript in the AML samples correlated with their response to thrombopoietin (THPO). Moreover, we demonstrated that MPL provides pro-proliferative effect for the leukemic cells, and that the effect can be abrogated with inhibitors of PI3K/AKT and MEK/ERK pathways. Taken together, these data confirm important roles for the PI3K/AKT and RAS/RAF/MEK pathways in the pathogenesis of AML, identifies two novel genes that can serve as secondary mutations in CBF fusions-associated AML, and in general expands our knowledge of mechanisms of leukemogenesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Montelius, Andreas. "Role of transcription factors in sensory neuron specification /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-115-9/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barutcu, Ahmet Rasim. "Characterization of Higher-order Chromatin Structure in Bone Differentiation and Breast Cancer: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/827.

Full text
Abstract:
Higher-order genome organization is important for the regulation of gene expression by bringing different cis-regulatory elements and promoters in proximity. The establishment and maintenance of long-range chromatin interactions occur in response to cellular and environmental cues with the binding of transcription factors and chromatin modifiers. Understanding the organization of the nucleus in differentiation and cancer has been a long standing challenge and is still not well-understood. In this thesis, I explore the dynamic changes in the higher-order chromatin structure in bone differentiation and breast cancer. First, we show dynamic chromatin contact between a distal regulatory element and the promoter of Runx2 gene, which encodes the Runtrelated transcription factor 2 (RUNX2) that is essential for bone development. Next, via using a genome-wide approach, we show that breast cancer cells have altered long-range chromatin contacts among small, gene-rich chromosomes and at telomeres when compared with mammary epithelial cells. Furthermore, we assess the changes in nuclear structure and gene expression of breast cancer cells following Runt-related transcription factor 1 (RUNX1) deficiency, an event frequently observed in breast cancer. Finally, I present the role of the central ATPase subunit of the SWI/SNF complex, SMARCA4 (BRG1), in mediating nuclear structure and gene expression. Taken together, the research presented in this thesis reveals novel insight and paradigm for the dynamic changes in disease and differentiation, as well as uncovers previously unidentified roles for two chromatin regulatory proteins, RUNX1 and SMARCA4.
APA, Harvard, Vancouver, ISO, and other styles
9

Theriault, Francesca M. "Regulation of neuronal diversity in the mammalian nervous system." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103300.

Full text
Abstract:
To acquire its characteristic structural and functional complexity, the mammalian nervous system must undergo several critical developmental processes. One such process requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown in this thesis that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the murine olfactory epithelium. Disruption of Runx1 function in vivo does not result in a change in the quantity of progenitors but leads to a decrease in precursor number and an increase in differentiated ORNs. These effects result in premature and ectopic ORN differentiation. Further, exogenous Runx1 expression in cultured olfactory neural progenitors causes an expansion of the mitotic cell population. In agreement with these findings, exogenous Runx1 expression also promotes cortical neural progenitor cell proliferation without inhibiting neuronal differentiation. These effects appear to involve transcriptional repression mechanisms. Consistent with this possibility, Runx1 represses transcription driven by the promoter of the cell cycle inhibitor p21Cip1 in cortical progenitors. Taken together, these findings suggest a previously unrecognized role for Runx1 in coordinating the proliferation and neuronal differentiation of selected populations of neural progenitors/precursors.
Another significant step in the development of the mammalian nervous system is the acquisition of distinctive neuronal traits. This thesis also shows that Runx1 is expressed in selected populations of postmitotic neurons of the murine embryonic central and peripheral nervous systems. In embryos lacking Runx1 activity, hindbrain branchiovisceral motor neuron precursors of the cholinergie lineage are correctly specified but then fail to enter successive stages of differentiation and undergo increased cell death resulting in neuronal loss in the mantle layer. Runx1 inactivation also leads to a loss of selected sensory neurons in trigeminal and vestibulocochlear ganglia. These findings uncover previously unrecognized roles for Runx1 in the regulation of neuronal subtype specification.
This thesis thus presents a novel factor which functions at several steps in the development of the mammalian nervous system and adds to the growing body of work on the processes involved in elaborating such a complex and vital structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Gutierrez, Gallegos Soraya Elisa. "Mechanisms Contributing to Transcriptional Regulation and Chromatin Remodeling of the Bone Specific Osteocalcin Gene." eScholarship@UMMS, 2002. https://escholarship.umassmed.edu/gsbs_diss/12.

Full text
Abstract:
Activation of tissue-specific genes is a tightly controlled process that normally involves the combined action of several transcription factors and transcriptional co-regulators. The bone-specific osteoca1cin gene (OC) has been used as a prototype to study both tissue-specific and hormonal responsiveness. In this study we have examined the role of Runx2, VDR and C/EBP factors in the regulation of OC gene transcription. Contributions of the Runx and VDRE motifs to OC promoter activity were addressed by introducing point mutations within the context of the rat (-1.1 kb) osteocalcin promoter fused to a CAT-reporter gene. The functional significance of these mutations was assayed following transient transfection and after genomic integration in ROS 17/2.8 osteoblastic cell lines. Furthermore, we tested the effect of these mutations on the chromatin organization of the OC promoter. Our data show that all three Runx sites are required for maximal activation of the OC promoter and that the distal sites contribute significantly to the basal activity. Strikingly, mutation of the three Runx sites abrogates responsiveness of the OC promoter to vitamin D; this loss is also observed when only the Runx sites flanking the VDRE are mutated. Chromatin changes that result in the appearance of DNase I hypersensitive sites during activation of the OC gene are well documented. Mutation of the three Runx sites results in altered chromatin structure as reflected by absence of DNase I hypersensitive sites at the vitamin D response element and over the proximal, tissue-specific basal promoter. These data are consistent with the critical role of Runx2 in osteoblast maturation and bone development. Mutation of the VDRE resulted in a complete loss of vitamin D responsiveness; however, this mutant promoter exhibited increased basal activity. The two DNase I hypersensitive sites characteristic of the transcriptionally active OC gene in osteoblastics cells were not altered upon mutation of the VDRE element, although restriction enzyme accessibility in the proximal promoter region was decreased. We also found an increased level of histone H3 acetylation at the VDRE mutant promoter in comparison to the endogenous gene. Thus binding of VDR to OC promoter is required to achieve a normal transcriptional regulation and chromatin structure of the OC gene. Although Runx2 is considered a master gene for bone development and osteoblast differentiation, it is noteworthy that osteoblast-specific transcription of the rat OC promoter occurs even in the absence of Runx sites. Therefore, other transcription factor(s) should be able to drive OC expression. We characterized a C/EBP enhancer element in the proximal promoter of the rat osteoca1cin gene that resides in close proximity to a Runx element, essential for tissue-specific activation. We find that C/EBPβ or δ and Runx2 factors interact together in a synergistic manner to enhance OC transcription in cell culture systems. Mutational analysis demonstrated that this synergism is mediated through the C/EBP responsive element in the OC promoter and requires a direct interaction between Runx2 and C/EBPβ or δ. Taken together, our findings strongly support a mechanism in which combinatorial interaction of Runx2, VDR, C/EBPβ or δ and probably other transcription factors are needed for regulating OC expression. In this process Runx factors not only act as simple transcriptional trans activators but also by facilitating modifications in promoter architecture and maintaining an active conformation of the target gene promoter.
APA, Harvard, Vancouver, ISO, and other styles
11

Young, Daniel W. "Regulation of Cell Growth and Differentiation within the Context of Nuclear Architecture by the Runx2 Transcription Factor: a Dissertation." eScholarship@UMMS, 2005. https://escholarship.umassmed.edu/gsbs_diss/19.

Full text
Abstract:
The Runx family of transcription factors performs an essential role in animal development by controlling gene expression programs that mediate cell proliferation, growth and differentiation. The work described in this thesis is concerned with understanding mechanisms by which Runx proteins support this program of gene expression within the architectural context of the mammalian cell nucleus. Multiple aspects of nuclear architecture are influenced by Runx2 proteins including sequence-specific DNA binding at gene regulatory regions, organization of promoter chromatin structure, and higher-order compartmentalization of proteins in nuclear foci. This work provides evidence for several functional activities of Runx2 in relation to architectural parameters of gene. expression for the control of cell growth and differentiation. First, the coordination of SWI/SNF mediated chromatin alterations by Runx2 proteins is found to be a critical component of osteoblast differentiation for skeletal development. Several chromatin modifying enzymes and signaling factors interact with the developmentally essential Runx2 C-terminus. A patent-pending microscopic image analysis strategy invented as part of this thesis work - called intranuclear informatics - has contributed to defining the C-terminal portion of Runx2 as a molecular determinant for the nuclear organization of Runx2 foci and directly links Runx2 function with its organization in the nucleus. Intranuclear informatics also led to the discovery that nuclear organization of Runx2 foci is equivalently restored in progeny cells following mitotic division - a natural perturbation in nuclear structure and function. Additional microscopic studies revealed the sequential and selective reorganization of transcriptional regulators and RNA processing factors during progression of cell division to render progeny cells equivalently competent to support Runx2 mediated gene expression. Molecular studies provide evidence that the Runx proteins have an active role in retaining phenotype by interacting with target gene promoters through sequence-specific DNA binding during cell division to support lineage-specific control of transcriptional programs in progeny cells. Immunolocalization of Runx2 foci on mitotic chromosome spreads revealed several large foci with pairwise symmetry on sister chromatids; these foci co-localize with the RNA polymerase I transcription factor, Upstream Binding Factor (UBFl) at nucleolar organizing regions. A series of experiments were carried out to reveal that Runx2 interacts directly with ribosomal DNA loci in a cell cycle dependent manner; that Runx2 is localized to UBF foci within nucleoli during interphase; that Runx2 attenuates rRNA synthesis; and that this repression of ribosomal gene expression by Runx2 is associated with cell growth inhibition and induction of osteoblast-specific gene expression. This thesis has identified multiple novel mechanisms by which Runx2 proteins function within the hierarchy of nuclear architecture to control cell proliferation, growth and differentiation.
APA, Harvard, Vancouver, ISO, and other styles
12

Byon, Chang Hyun. "Oxidative stress-stimulated vascular calcification." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/byon.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ko, Rose Marie. "The effect of the AML1-ETO translocation on cell cycle tumor suppressor gene function." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/ko.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dowdy, Christopher R. "Runx1 C-terminal Domains During Hematopoietic Development and Leukemogenesis: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/604.

Full text
Abstract:
Runx1 is a master regulator of hematopoiesis, required for the initiation of definitive hematopoiesis in the embryo and essential for appropriate differentiation of many hematopoietic lineages in the adult. The roles of Runx1 in normal hematopoiesis are juxtaposed with the high frequency of Runx1 mutations and translocations in leukemia. Leukemia associated Runx1 mutations that retain DNA-binding ability have truncations or frame shifts that lose C-terminal domains. These domains are important for subnuclear localization of Runx1 and protein interactions with co-factors. The majority of leukemia associated Runx1 translocations also replace the C-terminus of Runx1 with chimeric fusion proteins. The common loss of Runx1 C-terminal domains in hematopoietic diseases suggests a possible common mechanism. We developed a panel of mutations to test the functions of these domains in vitro, and then developed mouse models to examine the consequences of losing Runx1 C-terminal domains on hematopoietic development and leukemogenesis in vivo. We previously observed that overexpression of a subnuclear targeting defective mutant of Runx1 in a myeloid progenitor cell line blocks differentiation. Gene expression analysis before differentiation was initiated revealed that the mutant Runx1 was already deregulating genes important for maturation. Furthermore, promoters of the suppressed genes were enriched for binding sites of known Runx1 co-factors, indicating a non-DNA-binding role for the mutant Runx1. To investigate the in vivo function of Runx1 C-terminal domains, we generated two knock-in mouse models; a C-terminal truncation, Runx1Q307X, and a point mutant in the subnuclear targeting domain, Runx1 HTY350-352AAA . Embryos homozygous for Runx1 Q307X phenocopy a complete Runx1 null and die in utero from central nervous system hemorrhage and lack of definitive hematopoiesis. Embryos homozygous for the point mutation Runx1HTY350-352AAA bypass embryonic lethality, but have hypomorphic Runx1 function. Runx1HTY350-352AAA results in defective growth control of hematopoietic progenitors, deregulation of B-lymphoid and myeloid lineages, as well as maturation delays in megakaryocytic and erythroid development. Runx1 localizes to subnuclear domains to scaffold regulatory machinery for control of gene expression. This work supports the role of transcription factors interacting with nuclear architecture for greater biological control, and shows how even subtle alterations in that ability could have profound effects on normal biological function and gene regulation.
APA, Harvard, Vancouver, ISO, and other styles
15

Duployez, Nicolas. "Etude des altérations génomiques acquises dans les leucémies aiguës myéloïdes impliquant le core binding factor." Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S037/document.

Full text
Abstract:
Les gènes RUNX1 et CBFB codent pour les sous-unités du core binding factor (CBF), facteur de transcription hétérodimérique essentiel de l’hématopoïèse définitive. La dérégulation du CBF est l'une des anomalies les plus fréquemment rencontrées dans les hémopathies malignes. Puisque la perturbation seule du CBF est insuffisante au développement d’une leucémie aiguë myéloïde (LAM), les LAM impliquant le CBF sont considérées comme des modèles de leucémogénèse multi-étapes, nécessitant la coopération d’anomalies génétiques additionnelles.Dans ce travail, nous nous sommes intéressés aux LAM de type CBF, caractérisées soit par une t(8;21)/fusion RUNX1-RUNX1T1 soit par une inv(16)/fusion CBFB-MYH11, ainsi qu’aux LAM avec mutations germinales de RUNX1 (définissant la thrombopénie familiale avec prédisposition aux leucémies aiguës ou FPD/AML). Afin d’identifier des anomalies additionnelles, nous avons étudié les prélèvements de patients atteints de LAM CBF inclus dans les essais français ELAM02 (0-18 ans) et CBF2006 (18-60 ans) par séquençage à haut débit (n=215) et single nucleotide polymorphism-array (n=198). Les échantillons de 25 individus atteints de FPD/AML (issus de 15 familles), diagnostiqués entre 2005 et 2014, ont également été séquencés au stade thrombopénique et au moment de la transformation en leucémie aiguë.Dans les LAM CBF, les mutations activatrices des voies tyrosines kinases (TK) sont les événements les plus fré-quents quel que soit le sous-type de LAM CBF [t(8;21) ou inv(16)], comme cela a déjà été rapporté dans d’autres études. En revanche, les mutations affectant les gènes du remodelage chromatinien ou du complexe de la cohésine sont identifiées à des fréquences élevées (41% et 18% respectivement) dans les LAM avec t(8;21) tandis qu’elles sont pratiquement absentes dans les LAM avec inv(16). Dans les LAM avec t(8;21), la coexistence de ces mutations avec les mutations de type TK est associée à un pronostic défavorable suggérant une synergie entre ces événements. D'autres événements fréquemment retrouvés incluent les mutations de ZBTB7A et DHX15 dans les LAM avec t(8;21) (20% et 6% respectivement) et les délétions/mutations de FOXP1 dans les LAM avec inv(16) (7%). Enfin, nous avons décrit la perturbation de CCDC26 comme une possible lésion associée à une signalisation aberrante des TK dans les LAM CBF (4,5% des cas).Dans les FPD/AML, l'analyse mutationnelle a révélé l'acquisition d'un deuxième événement impliquant RUNX1 chez tous les patients ayant développé une LAM. Ce deuxième événement correspondait soit à une mutation somatique du second allèle de RUNX1 soit à la duplication de la mutation germinale de RUNX1 (par perte d'hétérozygotie sans anomalie du nombre de copies ou trisomie 21 acquise). En pratique clinique, cela suggère que la présence de deux mutations différentes de RUNX1 ou d'une seule mutation avec un ratio allélique supérieur à 50% chez un patient atteinte de LAM doit alerter sur la possibilité d’un syndrome FPD/AML sous-jacent
RUNX1 and CBFB encode subunits of the core binding factor (CBF), a heterodimeric transcription factor required for the establishment of definitive hematopoiesis. Deregulation of the CBF is one of the most frequent aberrations in hematological malignancies. Since CBF disruption alone is insufficient to induce acute myeloid leukemia (AML) on its own, AML with CBF involvement is considered as a model of multistep leukemogenesis requiring additional genetic aberrations.Here, we focused on acute myeloid leukemia (AML) with t(8;21)/RUNX1-RUNX1T1 fusion and AML with inv(16)/CBFB-MYH11 fusion, reported together as CBF AML, as well as AML with germline RUNX1 mutation (defining the familial platelet disorder with propensity to develop leukemia or FPD/AML).In order to explore additional genomic aberrations, we performed comprehensive genetic profiling in CBF AML patients enrolled in the French trials ELAM02 (0-18 years) and CBF2006 (18-60 years) using both high-throughput sequencing (n=215) and single nucleotide polymorphism-array (n=198). In addition, we sequenced samples from 25 individuals with FPD/AML (15 pedigrees) diagnosed between 2005 and 2014 at thrombocyto-penic stage and during leukemic progression.In CBF AML, mutations in genes activating tyrosine kinase (TK) signaling were frequent in both subtypes as previously described by others. By contrast, we found mutations in genes encoding chromatin modifiers or members of the cohesin complex with high frequencies in t(8;21) AML (41% and 18% respectively) while they were nearly absent in inv(16) AML. Interestingly, such mutations were associated with a poor prognosis in patients with TK mutations suggesting synergic cooperation between these events. Other events included ZBTB7A and DHX15 mutations in t(8;21) AML (20% and 6% respectively) and FOXP1 deletions or truncating mutations in inv(16) AML (7%). Finally, we described CCDC26 disruption as a possible new lesion associated with aberrant TK signaling in this particular subtype of leukemia (4.5% of CBF AML).In FPD/AML, mutational analysis revealed the acquisition of a second event involving RUNX1 in all patients with AML including somatic mutation of the second allele or duplication of the germline RUNX1 mutation through copy-neutral loss of heterozygosity and trisomy 21. In clinical practice, we suggest that the occurrence of two different RUNX1 mutations or a single RUNX1 mutation with a variant allele frequency higher than 50% in a patient with AML should alert about the possibility of FPD/AML
APA, Harvard, Vancouver, ISO, and other styles
16

"Prognostic implication of RUNX3 in adult acute myeloid leukemia (AML) and Its role in transcriptional regulation in myeloid cells." 2013. http://library.cuhk.edu.hk/record=b6116178.

Full text
Abstract:
RUNX3是RUNX轉錄因子家族的其中一位成員。RUNX轉錄因子家族是負責調控細胞的增殖和分化。最近研究表明RUNX3可能在造血過程中扮演其中一個角色。可是,它在髓系細胞中的調節角色依然未明。此前,我們發現在核心結合因子急性骨髓性白血病中的融合蛋白RUNX1-ETO和CBFB-MYH11會抑制RUNX3基因表達,並且RUNX3表達水平對兒童急性骨髓性白血病的預後有顯著影響。本研究的目的是要調查RUNX3在成人急性骨髓性白血病的預後價值,並透過闡明RUNX3的轉錄調節去了解其在髓系細胞分化扮演的角色。
首先,我們透過實時定量聚合鏈反應去量化在174個成人急性骨髓性白血病的患者骨髓中的RUNX3表達,從而調查RUNX3表達與成人急性骨髓性白血病預後的關係。我們發現低RUNX3表達與較好預後的核型(P=0.045),NPM1基因突變(P=0.014) 和較年青患者(P=0.084) 有關聯。在存活分析中,我們把有完整生存數據的非急性前骨髓性白血病病人分成高RUNX3表達和低RUNX3表達兩組。在成人急性骨髓性白血病中,高RUNX3表達和較差整體存活率(OS) (P=0.011)和無事件存活率(EFS) (P=0.003)有顯著的關聯,這和我們在兒童急性骨髓性白血病所觀察的一致。高RUNX3表達和較差存活率的關係在有野生型FLT3基因的病人中更為明顯(OS, P=0.004; EFS, P=0.001)。由於低RUNX3表達和較好預後核型有關聯,我們進一步只對擁有較差預後核型的病人作將存活分析,發現RUNX3表達仍是影響EFS的一個顯著因素(P=0.017)。在多元分析中,高RUNX3表達在所有病人(EFS, P=0.026, HR=2.433, 95%CI = 1.114-5.356),野生v 型FLT3基因的病人(OS, P=0.016, HR=4.830, 95%CI = 1.335-17.481; EFS, P=0.007, HR=4.103, 95%CI = 1.480-11.372)和較差預後核型的病人(EFS, P=0.024,HR=2.339, 95%CI = 1.117-4.896) 中都是一個獨立的不利預後因素。
接著,我們研究RUNX3基因的表達調控。我們鑒定出一個最小啟動子區對於在髓系細胞的基因表達有關鍵作用。透過預測啟動子區和轉錄因子結合位點的分析,顯示這個活性區域含有PU.1,AP-1和Sp1轉錄因子結合位點。我們透過報告基因系統研究,染色質免疫沈澱技術及電泳遷移率改變分析去闡明PU.1,c-Jun及Sp1和相對的轉錄因子結合位點參與RUNX3基因的表達調控。我們進一步透過PU.1基因剔除去證實RUNX3是PU.1的直接下遊靶基因並發現PU.1與RUNX3表達在急性骨髓性白血病人中呈正相關性。
由於RUNX3基因表達受到PU.1, c-Jun及Sp1的控制,我們繼續研究RUNX3在髓系細胞分化的功用。我們透過實時定量聚合鏈反應及流式細胞儀檢測發現RUNX3過度表達誘導K562細胞株作單核細胞及粒細胞分化。RUNX3能激活髓系基因的啟動子。它在成熟髓系細胞的表達水平明顯比血幹細胞為高。根據以上結果,RUNX3也許在單核細胞及粒細胞分化中有一定功能。但是,有別於其他癌細胞,RUNNX3不能在髓系細胞誘導細胞凋亡和周期阻滯。
總括而言,RUNX3表達在成人急性骨髓性白血病中是一個獨立的預後因素。除此之外,本研究表明RUNX3受到PU.1,c-Jun及Sp1的表達調控並在單核細胞及粒細胞分化中有一定功能。
RUNX3 is a member of Runt-related domain (RUNX) transcription factor family, which regulates cell proliferation and differentiation. Recent studies have suggested a role of RUNX3 in hematopoiesis. However, its regulatory function in myeloid cells remains unclear. Our group previously showed that RUNX3 expression was repressed by the fusion proteins RUNX1-ETO and CBFB-MYH11 in core-binding factor acute myeloid leukemia (CBF-AML) and had prognostic implication in childhood AML patients. The aim of this study is to investigate the prognostic value of RUNX3 in adult AML patients and its role in myeloid differentiation by elucidating its transcriptional control.
To investigate the relationship between RUNX3 expression and prognosis of adult AML, RUNX3 expression in the diagnostic bone marrow samples from 174 adult AML patients were quantified by real time quantitative PCR (RQ-PCR). Low RUNX3 expression was found to be associated with favorable cytogenetic group (P=0.045), NPM1 mutations (P=0.014) and younger age (P=0.084). For the survival analysis, 110 non-acute promyelocytic leukemia (non-APL) patients with complete survival data were dichotomized into high and low expression groups. Concordant with our previous observation in childhood AML, a significant association between high RUNX3 expression and poorer overall survival (OS) (P=0.011) and event-free survival (EFS) (P=0.003) was observed. The association between high RUNX3 expression and poorer survival was further strengthened in patients with wild-type FLT3 (P=0.004 and 0.001 for OS and EFS respectively). Since low RUNX3 expression was associated with favorable cytogenetics, the analysis was next restricted to patients with non-favorable cytogenetics and RUNX3 expression remained as a significant factor for EFS (P=0.017). In multivariate analysis, high RUNX3 expression was an independent adverse prognostic factor in the whole cohort (EFS, P=0.026, HR=2.433, 95%CI = 1.114-5.356), patients with wild-type FLT3 (OS, P=0.016, HR=4.830, 95%CI = 1.335-17.481; EFS, P=0.007, HR=4.103, 95%CI = 1.480-11.372) and patients with non-favorable genetics (EFS, P=0.024,HR=2.339, 95%CI = 1.117-4.896).
Next, the transcriptional regulation of RUNX3 in myeloid cells was investigated. A minimal promoter region was identified to be critical for myeloid-specific promoter activity. Sequence analysis of the fragment revealed potential transcription factor binding sites for PU.1, AP-1 and Sp1.The involvement of these putative binding sites and corresponding transcription factors in transcriptional regulation of RUNX3 was demonstrated by promoter reporter assay, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA).Furthermore, PU.1 knockdown in U937 cells confirmed RUNX3 was a direct downstream target of PU.1 and a positive correlation between PU.1 and RUNX3 expression was observed in AML patient samples.
As RUNX3 was shown to be transcriptionally regulated by PU.1, c-Jun and Sp1, a role of RUNX3 in myeloid differentiation was postulated. Overexpression of RUNX3 induced both monocytic and granulocytic markers in K562 myeloid cells as detected by flow cytometry and RQ-PCR. RUNX3 was also found to activate myeloid-specific gene promoters and its expression was significantly higher in mature myeloid cells than in hematopoietic stem cells. This suggested a role of RUNX3 in both monocytic and granulocytic differentiation. However, unlike in other solid tumors, RUNX3 did not induce apoptosis and cell cycle arrest in myeloid cells.
In conclusion, RUNX3 expression was an independent prognostic factor in adult AML. Furthermore, our findings showed that RUNX3 was transcriptionally regulated by the master myeloid regulator PU.1 along with c-Jun and Sp1 and implicated a role in monocytic and granulocytic differentiation.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Kwan, Tsz Ki.
Thesis (Ph.D.) Chinese University of Hong Kong, 2013.
Includes bibliographical references (leaves 171-202).
Abstracts also in Chinese.
APA, Harvard, Vancouver, ISO, and other styles
17

Lin, Yung-Chang, and 林永蒼. "Biological functions of zebrafish core binding factor alpha (CBFA) during cartilage development." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/87120934819629392879.

Full text
Abstract:
碩士
淡江大學
生命科學研究所碩士班
94
The vertebrate skeleton consists of cartilage and bone. Cartilage originates from chondrocyte and bone from osteoblast and osteoclast. CBFA (core binding factor alpha subunit) belongs to the runt homology domain family, that promotes the osteoblast differentiation and bone formation in early development and also inhibits osteoblast differentiation during late development. This dual functions of the CBFA maintains the balance of the bone formation and resorption. cbfa-null mice displayed cranium, mandible, bone malformation and embryonic lethal (Komori et al, 1997). In order to extend our knowledge of skeleton development on aquatic animal, we studied the biological function of CBFA on zebrafish. We isolated the zebrafish cbfa coding region, which encodes a 204 amino-acids polypeptide. Comparing the deduced amino-acids sequences of zebrafish CBFA to human, rat, mice, chicken and fugu, we found that they shared 82%, 82%, 74%, 83% and 78%, respectively. Using Reverse Transcription-Polymerase Chain Reaction (RT-PCR), we found that endogenous cbfa expression can be detected from one cell stage to one month stage, suggesting cbfa is a maternal inheritance gene. Whole-mount in situ hybridization was also performed, and indicated that the cbfa transcripts were detected in the pharyngeal arch at 3-7dpf embryos. Using cbfa-morpholino following by Alcian blue staining, we found that the average length (L) and width (W) of morphants’ heads are 0.347±0.0379 mm and 0.266±0.018 mm, which are around 30% smaller than their wild type littermates (L:0.515±0.019 mm; W:0.323±0.073 mm). We also found that the CBFA-morphants displayed specific abnormalities, such as ceratobranchial missing, ceratohyal and Meckel’s cartilage deformation. The cbfa-MO-induced specific abnormalities are in a dosage-dependent manner. As the MO injection dosages increased (1.5 ng to 4.5 ng), the specific abnormalities rates increased (6.5±2.41 to 51.5±2.60%). cbfa mRNA were also injected in order to rescue CBFA-morphants. The abnormalities of CBFA-morphants were decreased in a dosage-dependent manner after rescued by cbfa mRNA. Finally, we used Dlx2 (all neural crest cells) and Sox9a (postmigration neural crest cells) riboprobes to carry out whole-mount in situ hybridization on CBFA-morphants. These results show that neural crest cell specification and migration was affected by cbfa. Base on these observations, we propose that cbfa gene is essential for neural crest cell specification into ceratobranchial, Meckel’s cartilage and ceratohyal pharyngeal arch cartilages development.
APA, Harvard, Vancouver, ISO, and other styles
18

Shakibaei, M., C. Buhrmann, and A. Mobasheri. "Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells." 2011. http://hdl.handle.net/10454/6182.

Full text
Abstract:
Resveratrol is a polyphenolic phytoestrogen that has been shown to exhibit potent anti-oxidant, anti-inflammatory, and anti-catabolic properties. Increased osteoclastic and decreased osteoblastic activities result in bone resorption and loss of bone mass. These changes have been implicated in pathological processes in rheumatoid arthritis and osteoporosis. Receptor activator of NF-kappaB ligand (RANKL), a member of the TNF superfamily, is a major mediator of bone loss. In this study, we investigated the effects of resveratrol on RANKL during bone morphogenesis in high density bone cultures in vitro. Untreated bone-derived cell cultures produced well organized bone-like structures with a bone-specific matrix. Treatment with RANKL induced formation of tartrate-resistant acid phosphatase-positive multinucleated cells that exhibited morphological features of osteoclasts. RANKL induced NF-kappaB activation, whereas pretreatment with resveratrol completely inhibited this activation and suppressed the activation of IkappaBalpha kinase and IkappaBalpha phosphorylation and degradation. RANKL up-regulated p300 (a histone acetyltransferase) expression, which, in turn, promoted acetylation of NF-kappaB. Resveratrol inhibited RANKL-induced acetylation and nuclear translocation of NF-kappaB in a time- and concentration-dependent manner. In addition, activation of Sirt-1 (a histone deacetylase) by resveratrol induced Sirt-1-p300 association in bone-derived and preosteoblastic cells, leading to deacetylation of RANKL-induced NF-kappaB, inhibition of NF-kappaB transcriptional activation, and osteoclastogenesis. Co-treatment with resveratrol activated the bone transcription factors Cbfa-1 and Sirt-1 and induced the formation of Sirt-1-Cbfa-1 complexes. Overall, these results demonstrate that resveratrol-activated Sirt-1 plays pivotal roles in regulating the balance between the osteoclastic versus osteoblastic activity result in bone formation in vitro thereby highlighting its therapeutic potential for treating osteoporosis and rheumatoid arthritis-related bone loss.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography