To see the other types of publications on this topic, follow the link: Core-multishell.

Journal articles on the topic 'Core-multishell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Core-multishell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Filippin, A. Nicolas, Juan R. Sanchez-Valencia, Xabier Garcia-Casas, Victor Lopez-Flores, Manuel Macias-Montero, Fabian Frutos, Angel Barranco, and Ana Borras. "3D core-multishell piezoelectric nanogenerators." Nano Energy 58 (April 2019): 476–83. http://dx.doi.org/10.1016/j.nanoen.2019.01.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lauhon, Lincoln J., Mark S. Gudiksen, Deli Wang, and Charles M. Lieber. "Epitaxial core–shell and core–multishell nanowire heterostructures." Nature 420, no. 6911 (November 2002): 57–61. http://dx.doi.org/10.1038/nature01141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dayeh, Shadi A., and S. Tom Picraux. "Ge/Si Core/Multishell Heterostructure FETs." ECS Transactions 33, no. 6 (December 17, 2019): 681–86. http://dx.doi.org/10.1149/1.3487598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohammadifar, Ehsan, Mohsen Adeli, Ali Nemati Kharat, Hassan Namazi, and Rainer Haag. "Stimuli-Responsive Core Multishell Dendritic Nanocarriers." Macromolecular Chemistry and Physics 218, no. 8 (February 8, 2017): 1600525. http://dx.doi.org/10.1002/macp.201600525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boreham, Alexander, Marcus Pfaff, Emanuel Fleige, Rainer Haag, and Ulrike Alexiev. "Nanodynamics of Dendritic Core–Multishell Nanocarriers." Langmuir 30, no. 6 (February 5, 2014): 1686–95. http://dx.doi.org/10.1021/la4043155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fleige, Emanuel, Katharina Achazi, Karolina Schaletzki, Therese Triemer, and Rainer Haag. "pH-Responsive Dendritic Core–Multishell Nanocarriers." Journal of Controlled Release 185 (July 2014): 99–108. http://dx.doi.org/10.1016/j.jconrel.2014.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Chen, Kun Zheng, Ping-Ping Chen, Wei Lu, and Jin Zou. "Unexpected formation of a hierarchical structure in ternary InGaAs nanowires via “one-pot” growth." Nanoscale 9, no. 43 (2017): 16960–67. http://dx.doi.org/10.1039/c7nr04606e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Christopher L., Patrick Parkinson, Nian Jiang, Jessica L. Boland, Sonia Conesa-Boj, H. Hoe Tan, Chennupati Jagadish, Laura M. Herz, and Michael B. Johnston. "Low ensemble disorder in quantum well tube nanowires." Nanoscale 7, no. 48 (2015): 20531–38. http://dx.doi.org/10.1039/c5nr06996c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Chen, Xu-Tao Zhang, Kun Zheng, Ping-Ping Chen, Syo Matsumura, Wei Lu, and Jin Zou. "Epitaxial GaAs/AlGaAs core–multishell nanowires with enhanced photoluminescence lifetime." Nanoscale 11, no. 14 (2019): 6859–65. http://dx.doi.org/10.1039/c9nr01715a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Samokhvalov, P. S., P. A. Linkov, M. A. Zvaigzne, A. V. Kosmynceva, I. O. Petrova, V. A. Krivenkov, A. V. Sukhanova, and I. R. Nabiev. "Optical Properties of Core-Multishell Quantum Dots." KnE Energy 3, no. 2 (April 17, 2018): 449. http://dx.doi.org/10.18502/ken.v3i2.1850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ferrari, Giulio, Guido Goldoni, Andrea Bertoni, Giampaolo Cuoghi, and Elisa Molinari. "Magnetic States in Prismatic Core Multishell Nanowires." Nano Letters 9, no. 4 (April 8, 2009): 1631–35. http://dx.doi.org/10.1021/nl803942p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chaabani, Wajdi, Abdallah Chehaidar, Julien Proust, and Jérôme Plain. "Theoretical Analysis of the Optical Response of Silicon/Silica/Gold Multishell Nanoparticles in Biological Tissue." Advances in Materials Science and Engineering 2019 (February 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/9358740.

Full text
Abstract:
The scattering and absorption efficiencies of light by a single silicon/silica/gold spherical multishell in biological tissues are analyzed theoretically in the framework of Lorenz–Mie theory and finite-difference time-domain formalism. We first revised the ideal case of a concentric silicon/gold nanoshell, analyzed the effect of growing a silica layer of uniform thickness around the silicon core, and then examined the effect of an offset of the gold shell with respect to the centre of the silicon/silica nanoshell. Our simulation showed that the silicon/gold nanoshell in the biological tissue supports significant absorption and scattering resonances in the biological spectral window. On the contrary, the growth of a silica layer on the silicon core surface leads to a blueshift of these resonances accompanied by a slight increase of their magnitudes. The offset of the gold shell with respect to the silicon/silica core results in a redshift of the absorption and scattering resonances supported by the concentric silicon/silica/gold multishell within the biological window, accompanied by a decrease in their amplitudes. On the contrary, the gold shell offset gives rise to a more prominent electric field enhancement at the silicon/silica/gold multishell-biological tissue interface. Our simulation thus shows that silicon/silica/gold multishell nanoparticles are potential candidates in bioimaging and photothermal therapy applications.
APA, Harvard, Vancouver, ISO, and other styles
13

Yalcin, Anil O., Bart Goris, Relinde J. A. van Dijk-Moes, Zhaochuan Fan, Ahmet K. Erdamar, Frans D. Tichelaar, Thijs J. H. Vlugt, et al. "Heat-induced transformation of CdSe–CdS–ZnS core–multishell quantum dots by Zn diffusion into inner layers." Chemical Communications 51, no. 16 (2015): 3320–23. http://dx.doi.org/10.1039/c4cc08647c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pakpahan, Matius Nata, Aldi Hartanto, Yonatan Davidson Gultom, Nur Fadhilah, and Doty Dewi Risanti. "A SYNERGISTIC ABSORPTION AND PLASMONIC EFFECT OF SiO2@Au@TiO2 IN TiO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS." Jurnal Sains Materi Indonesia 22, no. 2 (August 16, 2021): 53. http://dx.doi.org/10.17146/jsmi.2021.22.3.6175.

Full text
Abstract:
A SYNERGISTIC ABSORPTION AND PLASMONIC EFFECT OF SiO2@Au@TiO2 IN A TiO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS. A method for increasing the visible-light harvesting of a TiO2 anatase photoanode in dye-sensitized solar cells by incorporating plasmonic nanostructures was developed. Sidoarjo mud as the SiO2 source was used to successfully synthesized core/multishell SiO2@Au@TiO2, with varying amounts of Au (60, 90, and 120 mL). In addition, the core/multishell fractions in TiO2 paste were varied, i.e., 0.5%, 1%, and 5%. The UV–Vis spectrum shows that a more ripple spectrum at higher wavelengths is obtained with increasing Au content, as suggested by the presence of large Au nanoparticles; however, a similar value of efficiency is observed for all sample variations studied compared to a pure TiO2 photoanode. The incident photon-to-current efficiency reveals that all photoanodes containing the core/multishell SiO2@Au@TiO2 studied show somewhat broader and enhanced spectra for all studied wavelengths compared to the pure TiO2 photoanode, resulting from the synergistic effect between plasmonic nanostructures and the presence of silica that boost the absorption to higher wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
15

Lindo, André M., Eva Pellicer, Muhammad A. Zeeshan, Roman Grisch, Famin Qiu, Jordi Sort, Mahmut S. Sakar, Bradley J. Nelson, and Salvador Pané. "The biocompatibility and anti-biofouling properties of magnetic core–multishell Fe@C NWs–AAO nanocomposites." Physical Chemistry Chemical Physics 17, no. 20 (2015): 13274–79. http://dx.doi.org/10.1039/c5cp01019e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jun, Shinae, and Eunjoo Jang. "Bright and Stable Alloy Core/Multishell Quantum Dots." Angewandte Chemie International Edition 52, no. 2 (November 20, 2012): 679–82. http://dx.doi.org/10.1002/anie.201206333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jun, Shinae, and Eunjoo Jang. "Bright and Stable Alloy Core/Multishell Quantum Dots." Angewandte Chemie 125, no. 2 (November 20, 2012): 707–10. http://dx.doi.org/10.1002/ange.201206333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Martínez-Criado, Gema, Alejandro Homs, Benito Alén, Juan A. Sans, Jaime Segura-Ruiz, Alejandro Molina-Sánchez, Jean Susini, Jinkyoung Yoo, and Gyu-Chul Yi. "Probing Quantum Confinement within Single Core–Multishell Nanowires." Nano Letters 12, no. 11 (October 5, 2012): 5829–34. http://dx.doi.org/10.1021/nl303178u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dutta, Amartya, Sarath Ramadurgam, and Chen Yang. "Plasmonic Core–Multishell Nanowire Phosphors for Light-Emitting Diodes." ACS Photonics 5, no. 5 (March 28, 2018): 1853–62. http://dx.doi.org/10.1021/acsphotonics.8b00069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kapadia, Rehan, Hyunhyub Ko, Yu-Lun Chueh, Johnny C. Ho, Toshitake Takahashi, Zhenxing Zhang, and Ali Javey. "Hybrid core-multishell nanowire forests for electrical connector applications." Applied Physics Letters 94, no. 26 (June 29, 2009): 263110. http://dx.doi.org/10.1063/1.3148365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nakai, Eiji, Masatoshi Yoshimura, Katsuhiro Tomioka, and Takashi Fukui. "GaAs/InGaP Core–Multishell Nanowire-Array-Based Solar Cells." Japanese Journal of Applied Physics 52, no. 5R (May 1, 2013): 055002. http://dx.doi.org/10.7567/jjap.52.055002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Ji-Eun, Yu Jin Jang, Wenqian Xu, Zhenxing Feng, Hee-Young Park, Jin Young Kim, and Dong Ha Kim. "PtFe nanoparticles supported on electroactive Au–PANI core@shell nanoparticles for high performance bifunctional electrocatalysis." Journal of Materials Chemistry A 5, no. 26 (2017): 13692–99. http://dx.doi.org/10.1039/c7ta02660a.

Full text
Abstract:
Efficient bifunctional electrocatalytic activity for reduction and oxidation reactions based on the AuNP@PANI@PtFe core–multishell nanostructures is presented. The AuNP@PANI@PtFe exhibits an enhanced catalytic activity and durability for ORR and MOR than conventional carbon supported Pt catalysts.
APA, Harvard, Vancouver, ISO, and other styles
23

Ishizaka, Fumiya, Yoshihiro Hiraya, Katsuhiro Tomioka, Junichi Motohisa, and Takashi Fukui. "Growth of All-Wurtzite InP/AlInP Core–Multishell Nanowire Array." Nano Letters 17, no. 3 (February 13, 2017): 1350–55. http://dx.doi.org/10.1021/acs.nanolett.6b03727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dia, Nada, Laurent Lisnard, Yoann Prado, Alexandre Gloter, Odile Stéphan, François Brisset, Hala Hafez, et al. "Synergy in Photomagnetic/Ferromagnetic Sub-50 nm Core-Multishell Nanoparticles." Inorganic Chemistry 52, no. 18 (August 29, 2013): 10264–74. http://dx.doi.org/10.1021/ic400303x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bleuse, Joël, Sophie Carayon, and Peter Reiss. "Optical properties of core/multishell CdSe/Zn(S,Se) nanocrystals." Physica E: Low-dimensional Systems and Nanostructures 21, no. 2-4 (March 2004): 331–35. http://dx.doi.org/10.1016/j.physe.2003.11.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mazuir, Clarisse. "Modeling of nitride based core/multishell nanowire light emitting diodes." Journal of Nanophotonics 1, no. 1 (January 1, 2007): 013503. http://dx.doi.org/10.1117/1.2516674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dayeh, S. A., A. V. Gin, and S. T. Picraux. "Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport." Applied Physics Letters 98, no. 16 (April 18, 2011): 163112. http://dx.doi.org/10.1063/1.3574537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Goto, Ken, Shinichi Tomimoto, Bipul Pal, Yasuaki Masumoto, Premila Mohan, Junichi Motohisa, and Takashi Fukui. "Transient band-bending in InP/InAs/InP core-multishell nanowires." physica status solidi (c) 6, no. 1 (January 2009): 205–8. http://dx.doi.org/10.1002/pssc.200879820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Catala, Laure, Daniela Brinzei, Yoann Prado, Alexandre Gloter, Odile Stéphan, Guillaume Rogez, and Talal Mallah. "Core-Multishell Magnetic Coordination Nanoparticles: Toward Multifunctionality on the Nanoscale." Angewandte Chemie International Edition 48, no. 1 (November 26, 2008): 183–87. http://dx.doi.org/10.1002/anie.200804238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Catala, Laure, Daniela Brinzei, Yoann Prado, Alexandre Gloter, Odile Stéphan, Guillaume Rogez, and Talal Mallah. "Core-Multishell Magnetic Coordination Nanoparticles: Toward Multifunctionality on the Nanoscale." Angewandte Chemie 121, no. 1 (November 26, 2008): 189–93. http://dx.doi.org/10.1002/ange.200804238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Linkov, P., P. Samokhvalov, K. Vokhmintsev, M. Zvaigzne, V. A. Krivenkov, and I. Nabiev. "Optical Properties of Quantum Dots with a Core–Multishell Structure." JETP Letters 109, no. 2 (January 2019): 112–15. http://dx.doi.org/10.1134/s0021364019020103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yukimune, M., R. Fujiwara, H. Ikeda, K. Yano, K. Takada, M. Jansson, W. M. Chen, I. A. Buyanova, and F. Ishikawa. "GaAs/GaNAs core-multishell nanowires with nitrogen composition exceeding 2%." Applied Physics Letters 113, no. 1 (July 2, 2018): 011901. http://dx.doi.org/10.1063/1.5029388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mohseni, P. K., C. Maunders, G. A. Botton, and R. R. LaPierre. "GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon." Nanotechnology 18, no. 44 (October 9, 2007): 445304. http://dx.doi.org/10.1088/0957-4484/18/44/445304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Palutkiewicz, T., M. Wołoszyn, P. Wójcik, and B. J. Spisak. "Transport Characteristics of Gated Core-Multishell Nanowires: Self-Consistent Approach." Acta Physica Polonica A 130, no. 5 (November 2016): 1190–92. http://dx.doi.org/10.12693/aphyspola.130.1190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nduwimana, A., R. N. Musin, A. M. Smith, and Xiao-Qian Wang. "Spatial Carrier Confinement in Core−Shell and Multishell Nanowire Heterostructures." Nano Letters 8, no. 10 (October 8, 2008): 3341–44. http://dx.doi.org/10.1021/nl8017725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Feng, Ling-Dong Sun, Wei Feng, Huanjun Chen, Man Hau Yeung, Jianfang Wang, and Chun-Hua Yan. "Heteroepitaxial Growth of Core-Shell and Core-Multishell Nanocrystals Composed of Palladium and Gold." Small 6, no. 22 (October 20, 2010): 2566–75. http://dx.doi.org/10.1002/smll.201000817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bhattacharjee, Yudhajit, Dipanwita Chatterjee, and Suryasarathi Bose. "Core–Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding." ACS Applied Materials & Interfaces 10, no. 36 (August 14, 2018): 30762–73. http://dx.doi.org/10.1021/acsami.8b10819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Bin, Mattias Jansson, Yumiko Shimizu, Weimin M. Chen, Fumitaro Ishikawa, and Irina A. Buyanova. "Self-assembled nanodisks in coaxial GaAs/GaAsBi/GaAs core–multishell nanowires." Nanoscale 12, no. 40 (2020): 20849–58. http://dx.doi.org/10.1039/d0nr05488g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stettner, T., P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, et al. "Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control." Applied Physics Letters 108, no. 1 (January 4, 2016): 011108. http://dx.doi.org/10.1063/1.4939549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Qian, Fang, Silvija Gradečak, Yat Li, Cheng-Yen Wen, and Charles M. Lieber. "Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes." Nano Letters 5, no. 11 (November 2005): 2287–91. http://dx.doi.org/10.1021/nl051689e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tomioka, Katsuhiro, Junichi Motohisa, Shinjiroh Hara, Kenji Hiruma, and Takashi Fukui. "GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si." Nano Letters 10, no. 5 (May 12, 2010): 1639–44. http://dx.doi.org/10.1021/nl9041774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pal, B., K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui. "Type-II behavior in wurtzite InP/InAs/InP core-multishell nanowires." Applied Physics Letters 93, no. 7 (August 18, 2008): 073105. http://dx.doi.org/10.1063/1.2966343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Masumoto, Yasuaki, Yuuki Hirata, Premila Mohan, Junichi Motohisa, and Takashi Fukui. "Polarized photoluminescence from single wurtzite InP/InAs/InP core-multishell nanowires." Applied Physics Letters 98, no. 21 (May 23, 2011): 211902. http://dx.doi.org/10.1063/1.3592855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dayeh, Shadi A., Nathan H. Mack, Jian Yu Huang, and S. T. Picraux. "Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck." Applied Physics Letters 99, no. 2 (July 11, 2011): 023102. http://dx.doi.org/10.1063/1.3567932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mariani, Giacomo, Zhengliu Zhou, Adam Scofield, and Diana L. Huffaker. "Direct-Bandgap Epitaxial Core–Multishell Nanopillar Photovoltaics Featuring Subwavelength Optical Concentrators." Nano Letters 13, no. 4 (March 13, 2013): 1632–37. http://dx.doi.org/10.1021/nl400083g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zheng, Changlin, Jennifer Wong-Leung, Qiang Gao, Hark Hoe Tan, Chennupati Jagadish, and Joanne Etheridge. "Polarity-Driven 3-Fold Symmetry of GaAs/AlGaAs Core Multishell Nanowires." Nano Letters 13, no. 8 (July 2, 2013): 3742–48. http://dx.doi.org/10.1021/nl401680k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lin, Hao, Zhiyuan Cheng, Dekang Xu, Yongjin Li, Liqin Xu, Ying Ma, Shenghong Yang, and Yueli Zhang. "A novel upconversion core–multishell nanoplatform for a highly efficient photoswitch." Journal of Materials Chemistry C 8, no. 10 (2020): 3483–90. http://dx.doi.org/10.1039/c9tc06840f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Walker, Karolina, Jean-François Stumbé, and Rainer Haag. "Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs." Polymers 8, no. 5 (May 14, 2016): 192. http://dx.doi.org/10.3390/polym8050192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Jiali, Xuan Gao, Diping He, Juan Chen, Xin Meng, Qiao Zhang, Lili Shen, and Huan Jiao. "Functionalized TiO2@ZrO2@Y2O3:Eu3+ core–multishell microspheres and their photoluminescence properties." Particuology 11, no. 6 (December 2013): 776–81. http://dx.doi.org/10.1016/j.partic.2013.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Guoqiang, Kouta Tateno, Tetsuomi Sogawa, and Hidetoshi Nakano. "Vertically Aligned GaP/GaAs Core-Multishell Nanowires Epitaxially Grown on Si Substrate." Applied Physics Express 1 (June 6, 2008): 064003. http://dx.doi.org/10.1143/apex.1.064003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography