Academic literature on the topic 'Corrosion inhibitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Corrosion inhibitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Corrosion inhibitors"
Savitri, Erna Noor, Putut Marwoto, and Sunyoto Eko Nugroho. "The Effectiveness of a Combination of Lime (Citrus aurantifolia.), Lerak (Sapindus rarak) and Jasmine Flower (Jasminum nudiflorum) Extracts as and Environmentally Friendly Corrosion Inhibitor." Jurnal Penelitian Pendidikan IPA 10, no. 3 (March 30, 2024): 1019–24. http://dx.doi.org/10.29303/jppipa.v10i3.6364.
Full textFlores-Garcia, N. S., C. D. Arrieta-Gonzalez, J. J. Ramos-Hernandez, G. K. Pedraza-Basulto, J. G. Gonzalez-Rodriguez, J. Porcayo-Calderon, and L. Martinez-Gomez. "Rare Earth-Based Compounds as Inhibitors of Hot-Corrosion Induced by Vanadium Salts." Materials 12, no. 22 (November 19, 2019): 3796. http://dx.doi.org/10.3390/ma12223796.
Full textPletnev, Mikhail. "Carbon nanocomposites in the corrosion inhibition." E3S Web of Conferences 225 (2021): 05002. http://dx.doi.org/10.1051/e3sconf/202122505002.
Full textDesai, Pradnya D., Chetan B. Pawar, Madhavi S. Avhad, and Aarti P. More. "Corrosion inhibitors for carbon steel: A review." Vietnam Journal of Chemistry 61, no. 1 (December 23, 2022): 15–42. http://dx.doi.org/10.1002/vjch.202200111.
Full textJasim, Haider Hadi, Read Abd Al-Hussain, and Ahmed Shawqi Sadeq. "Evaluation the Efficiency of Various Types of Corrosion Inhibitors Used for Basrah Water Storage Tanks." Al-Nahrain Journal for Engineering Sciences 23, no. 3 (November 21, 2020): 267–76. http://dx.doi.org/10.29194/njes.23030267.
Full textReyes-Dorantes, E., J. Zuñiga-Díaz, A. Quinto-Hernandez, J. Porcayo-Calderon, J. G. Gonzalez-Rodriguez, and L. Martinez-Gomez. "Fatty Amides from Crude Rice Bran Oil as Green Corrosion Inhibitors." Journal of Chemistry 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/2871034.
Full textAsmara, Yuli Panca, Firda Herlina, and Agus Geter Edy Sutjipto. "Selection of Inhibitor and Recent Advances in Enhancing Corrosion Prevention." Defect and Diffusion Forum 431 (February 6, 2024): 69–76. http://dx.doi.org/10.4028/p-ivxj7u.
Full textBahtiti, Nawal H., and Ibrahim Abdel-Rahaman. "Anti-Corrosive Effect of Jordanian-Bay- Leaves Aqueous Extract on Mild Steel in 1.0 M Hydrochloric Acid Solution." WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 17 (June 11, 2021): 614–18. http://dx.doi.org/10.37394/232015.2021.17.59.
Full textScepanovic, Jelena, Bojana Zindovic, Dragan Radonjic, Marijana Pantovic-Pavlovic, and Miroslav Pavlovic. "Influence of organic/inorganic inhibitors on AISI 304 (1.4301) and AISI 314 (1.4841) steels corrosion kinetics in nitric acid solution." Journal of the Serbian Chemical Society, no. 00 (2024): 76. http://dx.doi.org/10.2298/jsc240514076s.
Full textAde, Suraj B. "Corrosion Inhibition of Mild Steel in Different Acid Medium by Using Various Acidic Groups of Organic Compounds." International Journal for Research in Applied Science and Engineering Technology 10, no. 2 (February 28, 2022): 367–73. http://dx.doi.org/10.22214/ijraset.2022.40288.
Full textDissertations / Theses on the topic "Corrosion inhibitors"
Tan, Swee Hain. "Organic corrosion inhibitors." Thesis, Tan, Swee Hain (1991) Organic corrosion inhibitors. PhD thesis, Murdoch University, 1991. https://researchrepository.murdoch.edu.au/id/eprint/333/.
Full textTan, Swee Hain. "Organic corrosion inhibitors." Murdoch University, 1991. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060818.150145.
Full textEl, Moaty Ibrahim S. "Surfactant properties of corrosion inhibitors." Thesis, University of Hull, 2011. http://hydra.hull.ac.uk/resources/hull:5807.
Full textBalaskas, Andronikos. "Corrosion protection by encapsulated inhibitors." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/corrosion-protection-by-encapsulated-inhibitors(6295df0b-7ae9-4e8f-957b-2f9468740cb8).html.
Full textElliott, David. "Corrosion inhibitors for load-bearing steels." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303645.
Full textVuong, J. C. T. "Natural corrosion inhibitors for stainless steel." Thesis, University of Manchester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539460.
Full textSmith, G. A. W. "Design of environmentally-acceptable corrosion inhibitors." Thesis, University of Aberdeen, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.593457.
Full textPeggs, Lee James. "Electrochemical studies of iron corrosion inhibitors." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285364.
Full textRylands, Thaabit. "Corrosion of reinforcement in concrete : the effectiveness of organic corrosion inhibitors." Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/9946.
Full textReinforcement corrosion in concrete has presented engineers with the challenge of finding ways of prolonging the service life of structures built in aggressive environments. One method of increasing the durability of concrete in aggressive environments is the use of corrosion inhibitors. In this work, two organic corrosion inhibitors were tested to observe their effectiveness in decreasing the rate of corrosion or delaying the onset of corrosion. One of the inhibitors was a migrating corrosion inhibitor while the other was an admixed inhibitor. The corrosion rate of reinforcement in concrete specimens used in this evaluation, was measured using the Linear Polarisation Resistance method. The performance of the admixed inhibitor was also measured in aqueous phase tests. Results of the tests conducted indicate that the admixed inhibitor does delay the onset of corrosion. The Mel caused short to medium term inhibition when the chloride concentration was less than 1.5%.
Yasakau, Kiryl. "Active corrosion protection of AA2024 by sol-gel coatings with corrosion inhibitors." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/3724.
Full textA indústria aeronáutica utiliza ligas de alumínio de alta resistência para o fabrico dos elementos estruturais dos aviões. As ligas usadas possuem excelentes propriedades mecânicas mas apresentam simultaneamente uma grande tendência para a corrosão. Por esta razão essas ligas necessitam de protecção anticorrosiva eficaz para poderem ser utilizadas com segurança. Até à data, os sistemas anticorrosivos mais eficazes para ligas de alumínio contêm crómio hexavalente na sua composição, sejam pré-tratamentos, camadas de conversão ou pigmentos anticorrosivos. O reconhecimento dos efeitos carcinogénicos do crómio hexavalente levou ao aparecimento de legislação banindo o uso desta forma de crómio pela indústria. Esta decisão trouxe a necessidade de encontrar alternativas ambientalmente inócuas mas igualmente eficazes. O principal objectivo do presente trabalho é o desenvolvimento de prétratamentos anticorrosivos activos para a liga de alumínio 2024, baseados em revestimentos híbridos produzidos pelo método sol-gel. Estes revestimentos deverão possuir boa aderência ao substrato metálico, boas propriedades barreira e capacidade anticorrosiva activa. A protecção activa pode ser alcançada através da incorporação de inibidores anticorrosivos no prétratamento. O objectivo foi atingido através de uma sucessão de etapas. Primeiro investigou-se em detalhe a corrosão localizada (por picada) da liga de alumínio 2024. Os resultados obtidos permitiram uma melhor compreensão da susceptibilidade desta liga a processos de corrosão localizada. Estudaram-se também vários possíveis inibidores de corrosão usando técnicas electroquímicas e microestruturais. Numa segunda etapa desenvolveram-se revestimentos anticorrosivos híbridos orgânico-inorgânico baseados no método sol-gel. Compostos derivados de titania e zirconia foram combinados com siloxanos organofuncionais a fim de obter-se boa aderência entre o revestimento e o substrato metálico assim como boas propriedades barreira. Testes industriais mostraram que estes novos revestimentos são compatíveis com os esquemas de pintura convencionais actualmente em uso. A estabilidade e o prazo de validade das formulações foram optimizados modificando a temperatura de armazenamento e a quantidade de água usada durante a síntese. As formulações sol-gel foram dopadas com os inibidores seleccionados durante a primeira etapa e as propriedades anticorrosivas passivas e activas dos revestimentos obtidos foram estudadas numa terceira etapa do trabalho. Os resultados comprovam a influência dos inibidores nas propriedades anticorrosivas dos revestimentos sol-gel. Em alguns casos a acção activa dos inibidores combinou-se com a protecção passiva dada pelo revestimento mas noutros casos terá ocorrido interacção química entre o inibidor e a matriz de sol-gel, de onde resultou a perda de propriedades protectoras do sistema combinado. Atendendo aos problemas provocados pela adição directa dos inibidores na formulação sol-gel procurou-se, numa quarta etapa, formas alternativas de incorporação. Na primeira, produziu-se uma camada de titania nanoporosa na superfície da liga metálica que serviu de reservatório para os inibidores. O revestimento sol-gel foi aplicado por cima da camada nanoporosa. Os inibidores armazenados nos poros actuam quando o substrato fica exposto ao ambiente agressivo. Numa segunda, os inibidores foram armazenados em nano-reservatórios de sílica ou em nanoargilas (halloysite), os quais foram revestidos por polielectrólitos montados camada a camada. A terceira alternativa consistiu no uso de nano-fios de molibdato de cério amorfo como inibidores anticorrosivos nanoparticulados. Os nano-reservatórios foram incorporados durante a síntese do sol-gel. Qualquer das abordagens permitiu eliminar o efeito negativo do inibidor sobre a estabilidade da matriz do sol-gel. Os revestimentos sol-gel desenvolvidos neste trabalho apresentaram protecção anticorrosiva activa e capacidade de auto-reparação. Os resultados obtidos mostraram o elevado potencial destes revestimentos para a protecção anticorrosiva da liga de alumínio 2024.
The aerospace industry employs high strength aluminum alloys as a constructional material for aircrafts. Aluminum alloys possess advanced mechanical requirements, though suffer from corrosion. Therefore, corrosion protection is always used for aluminum alloys. Up to now the most effective corrosion protection systems include chromium (VI) as the main constituent of pretreatments and corrosion inhibitive pigments. However, the chromates are strongly carcinogenic and the present health regulations banned the use of Cr (VI) containing materials in industry. Consequently, there is a need for environmentally safe corrosion protection systems. The main objective of the present work is the development of active anticorrosion pre-treatments for 2024 aluminum alloy on the basis of hybrid sol-gel layers. The effective corrosion pre-treatment should confer adequate adhesion together with good barrier properties and active corrosion protection ability. The active corrosion protection can be achieved by introducing the corrosion inhibitors in the pre-treatment. Successful fulfilment of the main objective required accomplishing of different stages of the work. At first the localized corrosion of AA2024 was investigated in detail. The obtained results provide better understanding of the intimate aspects of the corrosion susceptibility of AA2024. Different prospective corrosion inhibitors were investigated using electrochemical and microstructural methods. At the second stage the development of hybrid sol-gel coatings was performed. Titania and zirconia based derivatives were combined with organofunctional silanes in order to provide the enhanced adhesion between the metal and the coating and to confer good barrier properties. Industrial tests show that the developed sol-gel coatings are compatible with common organic protection systems. The stability and life time of the sol-gel formulations were also optimized by changing the storage temperature and the amount of water during the synthesis. Sol-gel systems were doped with the selected corrosion inhibitors and studied from the point of view of passive and active corrosion protective properties at the third stage of the work. The results demonstrate the influence of the inhibitive additives on the corrosion performance of the sol-gel coatings. Some inhibitors can provide active corrosion protection in combination with the sol-gel coating, but some chemically interact with the sol-gel matrix resulting in failure of the protective properties of coatings. New approaches of inhibitor incorporation and delivery were used in the fourth stage of the work due to problems associated with the direct introduction of inhibitors in the sol-gels. A nanoporous titania-based pre-layer applied directly to the alloy was employed for storage and release of inhibitors. Nanocontainers of corrosion inhibitors based on silica and halloysite nanoclay with Layer-by- Layer assembled polyelectrolyte shells were used in the second approach. Amorphous cerium molybdate nanowires have been used as corrosion inhibitor nanoparticles in the third approach. During the sol-gel synthesis these nanocontainers were added to impart active corrosion protective properties of the sol-gel coatings. Using these approaches the negative effect of inhibitor on the sol-gel matrix stability was eliminated. The developed sol-gel pretreatments demonstrate important active corrosion protection and self-healing ability. The obtained results show high potential of the developed hybrid sol-gel pretreatment doped with corrosion inhibitors for the corrosion protection of AA2024.
FCT; FSE - SFRH/BD/25469/2005
Books on the topic "Corrosion inhibitors"
Innes, George L. Corrosion inhibitors. Norwalk, CT: Business Communications Co., 1999.
Find full textDonald, Saxman, and Business Communications Co, eds. Corrosion inhibitors. Norwalk, CT: Business Communications Co., 1993.
Find full textBaumgartner, William G. Corrosion inhibitors. Cleveland, Ohio: Freedonia Group, 1997.
Find full textSastri, V. S. Green Corrosion Inhibitors. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015438.
Full textIrene, Ash, ed. Handbook of corrosion inhibitors. 2nd ed. Endicott, N.Y: Synapse Information Resources, 2011.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Electrochemical studies of corrosion inhibitors. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textSastri, V. S. Corrosion inhibitors: Principles and applications. Chichester: Wiley, 1998.
Find full textFlick, Ernest W. Corrosion inhibitors: An industrial guide. Park Ridge, N.J: Noyes Publications, 1987.
Find full textVerma, Chandrabhan. Handbook of Heterocyclic Corrosion Inhibitors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003377016.
Full textBook chapters on the topic "Corrosion inhibitors"
Bradford, Samuel A. "Corrosion Inhibitors." In Corrosion Control, 235–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-8845-6_11.
Full textPapavinasam, S. "Corrosion Inhibitors." In Uhlig's Corrosion Handbook, 1021–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470872864.ch71.
Full textAndreatta, F., and L. Fedrizzi. "Corrosion Inhibitors." In Active Protective Coatings, 59–84. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7540-3_4.
Full textMcCafferty, E. "Corrosion Inhibitors." In Introduction to Corrosion Science, 357–402. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0455-3_12.
Full textSanni, Omotayo, Kingsley Ukoba, Jianwei Ren, and Tien-Chien Jen. "Corrosion Inhibitors." In Sustainable Corrosion Inhibition Using Agricultural Waste, 21–35. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003441151-2.
Full textNasab, Shima Ghanavati, Abolfazl Semnani, Mehdi Javaheran Yazd, Homa Kahkesh, Navid Rabiee, Mojtaba Bagherzadeh, and Mohammad Rabiee. "Fruits as Corrosion Inhibitors in Corrosive Environments." In Natural Corrosion Inhibitors, 41–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-79629-6_5.
Full textNasab, Shima Ghanavati, Abolfazl Semnani, Mehdi Javaheran Yazd, Homa Kahkesh, Navid Rabiee, Mojtaba Bagherzadeh, and Mohammad Rabiee. "A Journey to the Natural Corrosion Inhibitors in Corrosive Environments." In Natural Corrosion Inhibitors, 57–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-79629-6_7.
Full textNasab, Shima Ghanavati, Abolfazl Semnani, Mehdi Javaheran Yazd, Homa Kahkesh, Navid Rabiee, Mojtaba Bagherzadeh, and Mohammad Rabiee. "Corrosion Inhibitors: Fundamental Concepts." In Natural Corrosion Inhibitors, 3–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-79629-6_2.
Full textGan, Manguang. "Corrosion Control (III): Corrosion Inhibitors." In Engineering Materials, 111–30. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2392-2_7.
Full textZheng, Xingwen, and Lei Guo. "Plant Extracts as Corrosion Inhibitors." In Corrosion Science, 291–332. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003328513-10.
Full textConference papers on the topic "Corrosion inhibitors"
Ng, Jun Hong Clarence, Tariq Almubarak, and Hisham A. Nasr-El-Din. "Seed Extracts as Natural, Green, Non-Toxic Corrosion Inhibitors." In SPE Trinidad and Tobago Section Energy Resources Conference. SPE, 2021. http://dx.doi.org/10.2118/200935-ms.
Full textSintoorahat, Patchareeporn, Aree Wairatpanich, Suchada Chimam, Dayin Mongkholkhajornsilp, and Cheolho Kang. "Performance of Corrosion Inhibitors at High CO2 Pressures." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64114.
Full textAyan, Mohd, Aaditya Garg, Rohit Sharma, Shilpi Agarwal, and Barasha Deka. "Examining the Corrosion Behaviour of Carbon Steel Pipelines with Bio-Corrosion Inhibitors in Sub-Sea Environments." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222133-ms.
Full textSelim, Hatem, Baha Suleiman, Alaaeldin Dawood, Pierre Montagne, Sundar Amancherla, and Abdurrahman Khalidi. "Water-Based Yttrium Additive for Hot Corrosion Inhibition in a Gas Turbine." In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-127690.
Full textAmabuo, Collins, Virtue Urunwo Wachikwu-Elechi, and Sunday Sunday Ikiensikimama. "Corrosion Inhibition Using Hibiscus Rosa-Sinensis Extract for Mild Steel in an Acidic Medium." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/221765-ms.
Full textPapavinasam, S., and R. W. Revie. "Inhibitor Selection for Internal Corrosion Control of Pipelines." In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2027.
Full textNg, Jun Hong Clarence, Tariq Almubarak, and Hisham A. Nasr-El-Din. "Stems as Natural, Green, Non-Toxic Corrosion Inhibitors." In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202113-ms.
Full textZaid, Gene H., and Donald W. Sanders. "Binary Corrosion Inhibitors Offer Improved Corrosion Control." In SPE Western Regional/AAPG Pacific Section Joint Meeting. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/83481-ms.
Full textMartin, Richard L. "Unusual Oilfield Corrosion Inhibitors." In International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/80219-ms.
Full textMills, Douglas J., Joshua Zatland, and Nicola M. Everitt. "Experience Using Electrochemical Noise for Testing Green Corrosion Inhibitors." In SPE International Oilfield Corrosion Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205475-ms.
Full textReports on the topic "Corrosion inhibitors"
Biddle, T. B., and W. H. Edwards. Evaluation of Corrosion Inhibitors as Lubricity Improvers. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198743.
Full textSikes, C. S. Polypeptide Inhibitors of Mineral Scaling and Corrosion. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada241543.
Full textHobbs, D. T. Strategic Research: In-Tank Generation of Corrosion Inhibitors. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799378.
Full textFrankel, Gerald S., Rudolph G. Buchheit, Mark Jaworowski, and Greg Swain. Scientific Understanding of Non-Chromated Corrosion Inhibitors Function. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada582500.
Full textShukla, Pavan, Xihua He, Osvaldo Pensado, and Andrew Nordquist. PR-015-153602-R01 Vapor Corrosion Inhibitors Effectiveness for Tank Bottom Plate Corrosion Control. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2018. http://dx.doi.org/10.55274/r0011485.
Full textStriebich, Richard C. Effect of Corrosion Inhibitors on Conductivity of Aviation Turbine Fuel. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/adb100948.
Full textShukla, Pavan, Andrew Nordquist, Roderick Fuentes, and Bruce Wiersma. PR644-183611-R01 Vapor Corrosion Inhibitors Effectiveness for Tank Bottom Plate Corrosion Control - Phase 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2022. http://dx.doi.org/10.55274/r0012231.
Full textFrankel, Gerald S. Mechanism of Al Alloy Corrosion and the Role of Chromate Inhibitors. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada399114.
Full textObrien, Ivette Z. Biotransformation Potential and Uncoupling Behavior of Common Benzotriazole-Based Corrosion Inhibitors. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada414450.
Full textBessee, Gary B. Effects of Various Corrosion Inhibitors/Lubricity (CI/LI) on Fuel Filtration Performance. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada483759.
Full text